
Parallel data processing with MapReduce

Tomi Aarnio
Helsinki University of Technology

tomi.aarnio@hut.fi

Abstract

MapReduce is a parallel programming model and an asso-
ciated implementation introduced by Google. In the pro-
gramming model, a user specifies the computation by two
functions, Map and Reduce. The underlying MapReduce li-
brary automatically parallelizes the computation, and han-
dles complicated issues like data distribution, load balanc-
ing and fault tolerance. The original MapReduce imple-
mentation by Google, as well as its open-source counter-
part, Hadoop, is aimed for parallelizing computing in large
clusters of commodity machines. Other implementations for
different environments have been introduced as well, such
as Mars, which implements MapReduce for graphics pro-
cessors, and Phoenix, the MapReduce implementation for
shared-memory systems.

This paper gives an overview of MapReduce program-
ming model and its applications. We describe the workflow
of MapReduce process. Some important issues, like fault
tolerance, are studied in more detail. We also take a look at
the different implementations of MapReduce.

KEYWORDS: MapReduce, Hadoop, parallel data process-
ing, distributed computing, clusters

1 Introduction

MapReduce [2] is a programming model created by Google.
It was designed to simplify parallel data processing on large
clusters. First version of the MapReduce library was written
in February 2003. The programming model is inspired by the
map and reduce primitives found in Lisp and other functional
languages.

Before developing the MapReduce framework, Google
used hundreds of separate implementations to process and
compute large datasets. Most of the computations were rela-
tively simple, but the input data was often very large. Hence
the computations needed to be distributed across hundreds
of computers in order to finish calculations in a reasonable
time. MapReduce is highly efficient and scalable, and thus
can be used to process huge datasets.

When the MapReduce framework was introduced, Google
completely rewrote its web search indexing system to use the
new programming model. The indexing system produces the
data structures used by Google web search. There is more
than 20 Terabytes of input data for this operation. At first
the indexing system ran as a sequence of eight MapReduce
operations, but several new phases have been added since
then. Overall, an average of hundred thousand MapReduce

jobs are run daily on Google’s clusters, processing more than
twenty Petabytes of data every day [2].

The idea of MapReduce is to hide the complex details of
parallelization, fault tolerance, data distribution and load bal-
ancing in a simple library [2]. In addition to the computa-
tional problem, the programmer only needs to define param-
eters for controlling data distribution and parallelism [10].

The original MapReduce library was developed by Google
in 2003, and was written in C++ [2]. Google’s implementa-
tion is designed for large clusters of machines connected ina
network. Other implementations have been introduced since
the original MapReduce. For example, Hadoop [1] is an
open-source implementation of MapReduce, written in Java.
Like Google’s MapReduce, Hadoop uses many machines in
a cluster to distribute data processing.

The parallelization doesn’t necessarily have to be per-
formed over many machines in a network. There are differ-
ent implementations of MapReduce for parallelizing com-
puting in different environments. Phoenix [12] is an imple-
mentation of MapReduce, which is aimed at shared-memory,
multi-core and multiprocessor systems, i.e. single comput-
ers with many processor cores. Mars [7], on the other hand,
is a MapReduce framework for graphics processors (GPUs).
GPUs are massively parallel processors with much higher
computation power and memory bandwidth than CPUs, but
they are harder to program since their architecture and in-
terfaces are designed specifically for graphics applications.
MapReduce framework hides this complexity, so program-
mers can easily harness the computation power of the GPU
for data processing tasks.

Next section gives more detailed information about the
MapReduce framework and programming model, as well
as its applicability to various problem domains. Section 3
presents different implementations of MapReduce, and Sec-
tion 4 evaluates the performance, fault tolerance and other
issues of MapReduce implementations. Finally, Section 5
concludes the paper.

2 MapReduce

2.1 Programming model

MapReduce is a programming model introduced by Google.
It is inspired by the map and reduce primitives found in many
functional programming languages. MapReduce framework
consists of user supplied Map and Reduce functions, and
an implementation of MapReduce library, that automati-
cally handles data distribution, parallelization, load balanc-
ing, fault tolerance and other common issues. In addition, a



TKK T-110.5190 Seminar on Internetworking 2009-04-27

worker worker

Input f i les

Map phase

Intermediate f i les

workerworker Reduce phase

read

local write

remote read

wri te

Output f i les

Figure 1: MapReduce execution overflow

user needs to write some configurations, like names of the
input and output files, or some other, optional tuning param-
eters. The configurations also define how the input data is
splitted into key/value pairs.

In MapReduce programming model, users specify their
calculations as two functions, Map and Reduce. The Map
function takes a key/value pair as an input, and outputs a set
of intermediate key/value pairs. Reduce takes as an input
a key and a list of values assigned for it. Input values for
Reduce are automatically grouped from intermediate results
by the MapReduce library. After the necessary Map tasks
have been completed, the library takes a intermediate key
and groups it together with all the values associated with it.
The Reduce function takes an intermediate key and the value
list assigned for it as an input. It merges the values the way
the user has specified in the implementation of the Reduce
function, and produces a smaller set of values. Typically
only zero or one output is produced per Reduce task.

The programmingmodel is knowingly restricted, as it only
provides map and reduce functions to be implemented by
user. Because of the restrictions, MapReduce can offer a
simple interface for users to parallelize and distribute com-
putations [2]. Restricted programming model is good, be-
cause developers can focus on formulating the actual prob-
lem with two simple functions. However, restrictions make
it hard to express certain problems with the programming
model. Still most data processing tasks can be effectively
implemented with MapReduce. It is easy to add new MapRe-
duce phases to existing MapReduce operations. By adding
MapReduce phases, more complicated problems can be ex-
pressed with the programming model.

Fig. 1 represents the workflow in a MapReduce execution.
When running the user program, the MapReduce library first
splits the input data into M pieces, which are typically 16-
64MB per piece. Next the library runs many copies of the
program on the machines in a cluster. One of the copies is
the master node, which assigns the Map and Reduce tasks
to the worker nodes. There are M Map tasks to run, one for
each input data split.

When a worker node is assigned a Map task, it reads the
corresponding input split and passes the key/value pairs to
the user-defined Map function. The intermediate key/value
pairs are stored in the memory, and periodically written to
local disk, partitioned into R pieces. User-defined partition-
ing function (e.g. hash(key) mod R) is used to produce R
partitions. Locations of the intermediate key/value pairsare
passed back to the master, that forwards the information to
the Reduce workers when needed [2].

There are R reduce tasks. When a reduce worker receives
the location of intermediate results from the master, it reads
all the intermediate data for its partition from the local disk
of the Map worker. Then it iterates over the intermediate
pairs, and produces the output, which is appended to the fi-
nal output file for the corresponding reduce partition. When
all Map and Reduce are finished, master wakes up the user
program, and the code execution returns from the MapRe-
duce call back to the user code. After successful completion
of the MapReduce, the output is stored in R output files, one
for each Reduce task. File names of the output files are spec-
ified by the user, and they can be used for example as an
input for another MapReduce operation.

2.2 Example

Simple and popular example of using MapReduce is a prob-
lem of counting a number of distinct words in a large col-
lection of documents. This example is from the original
MapReduce paper [2]. Below is the pseudocode for the Map
and Reduce functions.

/* key: document name

* value: document contents

*/
map(String key, String value)
{
for each word w in value:

emitIntermediate(w, "1");
}

/* key: a word

* values: list of counts for the word

*/
reduce(String key, Iterator values)
{
int result = 0;
for each v in values:

result += ParseInt(v);
emit(result);

}

The Map function iterates through the document it re-
ceives as parameter, and simply emits the string ”1” for ev-
ery word in the document. Intermediate results are a set of
key/values pairs, where keys are now different words found
in the input documents, and values is a list of emitted values
for each word. Before the intermediate results are passed to
the Reduce tasks, values for different keys are grouped from
all the Map tasks by the MapReduce library. The Reduce
function takes a key and the list of values for it. Key is a
word, and values is a list of ”1”’s, one for each occurrence



TKK T-110.5190 Seminar on Internetworking 2009-04-27

of the word in the input documents. Reduce just adds these
values together, and the resulting count is emitted as an out-
put.

2.3 Applications

Since the development of MapReduce framework, there has
been quite a lot of research into using MapReduce in dif-
ferent kinds of problem domains [8, 11, 3, 4, 6, 13]. Many
computations can be done simply by using the MapReduce
programming model, but there are some that can’t be ex-
pressed with Map and Reduce functions.

For example, the iteration style of Genetic Algorithms
cannot directly be expressed with Map and Reduce functions
[8]. Genetic Algorithms are a class of evolutionary algo-
rithms used in fields such as chemistry and biology. Paral-
lel Genetic Algorithms have been adopted to improve effi-
ciency, since processing Genetic Algorithms generally takes
very long time for large problems. MapReduce needs to be
extended to support such algorithms, which is achieved by
adding a second reduce phase after the iterations, and a client
for coordinating the execution of iterations.

MapReduce can be used in SMS message mining [13].
SMS messages are popular and widely used for simple com-
munication between people. Number of SMS messages sent
in a month in any country is very large, and so is the origi-
nal dataset used in mining. Finding the most popular SMS
messages can be valuable information, but since the dataset
is so large, parallelization is needed to complete this taskin
reasonable time. Hadoop, the open-source implementation
of MapReduce, is used as a framework in SMS mining. Pro-
cessing of the messages is done in three steps. First the orig-
inal dataset is pre-processed and grouped by senders’ mobile
numbers. This is done by first MapReduce process. Second
MapReduce process does a transformation to regroup the
dataset by short content keys, and finally the third MapRe-
duce phase is needed to extract the popular messages.

Error-correcting codes are useful in many situations. If
data file needs to be saved on some faulty medium, the file
can be encoded with an error-correcting code. If the file
is corrupted while stored, there is a chance it can be re-
stored when decoding the error-correcting code. Encoding
very large files is a challenge. Standard encoding and de-
coding algorithms can’t handle very large block lengths, that
doesn’t allow random access to the data. Also encoding
should be done without breaking the file into smaller pieces,
since error-correcting achieves better performance on large
files. Feldman [4] uses Google’s computing infrastructure,
along with Google’s MapReduce implementation, to encode
and decode a very large Tornado code. Tornado codes are
error-correcting codes with linear-time encoding and decod-
ing algorithms. Tornado code can be applied to huge files
using parallelization offered by MapReduce framework.

Particle Swarm Optimization algorithms can be naturally
expressed with MapReduce [11]. When parallelized, Parti-
cle Swarm Optimization algorithms can be used to optimize
functions, that have to evaluate large amounts of data. Gen-
eralised Stochastic Petri nets, on the other hand, are a pop-
ular graphical modelling formalism, that can be used in the
performance analysis of computer and communications sys-

tems [6]. Calculation of response times in such models can
be done in parallel using MapReduce.

Most scientific data analyses evaluates huge amounts
of data. High Energy Physics experiments produce vast
amounts data, that needs to be analyzed. For example,
The Large Hadron Collider is expected to produce tens of
Petabytes of already filtered data in a year [3]. Another ex-
ample is from the field of astronomy, where the Large Syn-
optic Survey Telescope produces about 20 Terabytes of data
every night. It is clear that, to process and analyze such
amounts of data, many computers and efficient paralleliz-
ing routines must be used. MapReduce programming model
can be adapted to parallelize data intensive scientific analy-
ses. MapReduce is well suitable for scientific calculations,
mostly because of its fault tolerance and scalability.

3 Implementations

3.1 Google’s MapReduce

The original MapReduce implementation by Google is tar-
geted for large clusters of networked machines. First ver-
sion of the MapReduce library was written in February 2003,
but some significant changes were made to it later that year.
The MapReduce library automatically handles paralleliza-
tion and data distribution. Since the developers don’t need
to worry about things like parallel and network program-
ming, they can focus on the actual problem, i.e. presenting
the computational problem with Map and Reduce functions.

Data is distributed and saved on local disks of networked
machines. Google File System (GFS) [5] is a distributed
file system used to manage the data stored across the clus-
ter. GFS makes replicas of data blocks on multiple nodes for
improved reliability and fault tolerance.

GFS and MapReduce are designed to view machine fail-
ures as a default rather than an anomaly. MapReduce is
highly scalable, and therefore it can be run on clusters com-
prising of thousands of low-cost machines, built on unreli-
able hardware. MapReduce library can assume that at any
point, certain percentage of worker nodes will be unavail-
able.

3.2 Hadoop

Hadoop [1] is a MapReduce implementation by Apache. The
architecture of Hadoop is basically the same as in Google’s
implementation, and the main difference is that Hadoop is an
open-source implementation.

Data is distributed across the machines in network us-
ing the Hadoop Distributed File System (HDFS). HDFS dis-
tributes data on computers around the cluster, and creates
multiple replicas of data blocks for better reliability. Local
drives of networked machines are used to store data, which
makes the data available to other machines in network.

HDFS consists of two main processes, the Namenode and
a number of Datanodes [1]. The optional Secondary Namen-
ode can also be used as a back-up process for the Namenode.
The Namenode runs on a single master machine. It has in-
formation about all the machines in the cluster, and detailsof



TKK T-110.5190 Seminar on Internetworking 2009-04-27

the data blocks stored on the machines in the cluster. Datan-
ode processes run on all the other machines in the cluster,
and they communicate with the Namenode to know when to
fetch data on their local hard drive.

The MapReduce framework of Hadoop consists of single
JobTracker and a number of TaskTracker processes [1]. The
JobTracker usually runs on the same master machine as the
Namenode. Users send their MapReduce jobs to the Job-
Tracker, which splits the work between the machines in the
cluster. Each other machine in cluster runs a TaskTracker
process. TaskTracker communicates with the JobTracker,
which assigns it a Map or Reduce task when possible.

Hadoop can be configured to run multiple simultaneous
Map tasks on single nodes [6]. In multi-core systems this is
a great benefit, as it allows making full use of all cores.

3.3 Phoenix

Phoenix [12] is a MapReduce implementation aimed for
shared-memory systems. It consists of MapReduce pro-
gramming model and associated runtime library that handles
resource management, fault tolerance and other issues auto-
matically. It uses threads to create parallel Map and Reduce
tasks. Phoenix can be used to parallelize data intensive com-
putations on multi-core and multiprocessor computers.

The principles in Phoenix implementation are basically
the same as in original MapReduce, except instead of large
clusters, it is aimed for shared-memory systems. Overheads
caused by task spawning and data communications can be
minimized when working in a shared-memory environment.
The runtime uses P-threads to spawn parallel Map or Reduce
tasks, and schedules tasks dynamically to available proces-
sors [12].

In Phoenix, in addition to Map and Reduce functions, the
user provides a function that partitions the data before each
step, and a function that implements key comparison. The
programmer calls phoenix_scheduler() to start the MapRe-
duce process. The function takes configuration struct as an
input, in which the user specifies the user-provided func-
tions, pointers to input/output buffers and other options.The
scheduler controls the runtime, and manages the threads that
run all the Map and Reduce tasks. Phoenix spawns threads
on all available cores, trying to take full advantage of the
system [12].

3.4 Mars

Mars [7] implements the MapReduce framework for graph-
ics processors (GPU). GPUs are massively parallel proces-
sors with 10x higher computation power and memory band-
width than CPUs. Since GPUs are special purpose proces-
sors designed for gaming applications, their programming
languages lack support for some basic programming struc-
tures, like variable-length data types or recursion. Addi-
tionally, different GPU vendors have different architectural
details in their processors, which makes programming even
more difficult. Several GPGPU (General-Purpose comput-
ing on GPUs) languages have been introduced, that can be
used to write GPU programs without the knowledge of the

graphics rendering pipeline. An example of such language is
NVIDIA CUDA, which was also used to implement Mars.

The purpose of the Mars framework is to hide all the com-
plex details of the GPU. Threads are handled by the run-
time library. Characteristics of the user defined Map and Re-
duce functions, and the number of multiprocessors and other
computation resources are taken into account when deciding
the number of threads. GPUs don’t support dynamic thread
scheduling, so it is important to allocate threads correctly
before executing the MapReduce process [7]. Since GPUs
don’t support dynamic memory allocations, arrays are used
as the main data structure in Mars. Space for all the input,
intermediate and result data must be allocated on the device
memory before executing the program on GPU. Three kinds
of arrays are used to save the input data and results. Key and
value arrays contain all the keys and values, and a directory
index array consists of entries for each key/value pair. Direc-
tory index entries are in format <key offset, key size, value
offset, value size>, and they are used to fetch keys or values
from the corresponding arrays.

Mars workflow starts with preprocesing the raw input data
into key/value pairs. CPU is exploited for this task, since
GPUs don’t allow direct access to the disk [7]. The key/value
pairs are then copied to the device memory of the GPU, and
divided into chunks, such that the number of chunks is equal
to the number of threads. Dividing the input data evenly on
the threads makes this implementation load-balanced. After
the Map stage is done, the intermediate key/value pairs are
sorted. In Reduce stage, the split operation divides the sorted
intermediate key/value pairs into multiple chunks, such that
pairs with the same key belong to same chunk. Again, one
thread is responsible of one chunk, so the number of chunks
is same as the number of threads.

3.5 Map-Reduce-Merge

Map-Reduce-Merge [14] can be considered as an extension
to the MapReduce programming model, rather than an im-
plementation of MapReduce. Original MapReduce program-
ming model does not directly support processing multiple
related heterogeneous datasets. For example, relational op-
erations, like joining multiple heterogeneous datasets, can
be done with MapReduce by adding extra MapReduce steps.
Map-Reduce-Merge is an improved model, that can be used
to express relational algebra operators and join algorithms.

This improved framework introduces a new Merge phase,
that can join reduced outputs, and a naming and configur-
ing scheme, that extends MapReduce to process heteroge-
neous datasets simultaneously [14]. The Merge function is
much like Map or Reduce. It is supplied by the user, and
it takes two pairs of key/values as parameters. Unlike Map,
that reads a key/value pair, or Reduce, that processes a value
list for a key, Merge reads data (key/values pairs) from two
distinguishable sources.

Workflow in MapReduce programs is restricted to two
phases, i.e. mapping and reducing. Users have very few
options to configure this workflow. Adding a new Merge
phase creates many new workflow combinations, that can
handle more advanced data-processing tasks. Furthermore,
Map-Reduce-Merge provides a configuration API for users



TKK T-110.5190 Seminar on Internetworking 2009-04-27

to build custom workflows. Map-Reduce-Merge can be used
recursively, because the workflow allows outputs to be used
as an input for next Map-Reduce-Merge process.

4 Evaluation

4.1 Fault tolerance

MapReduce handles failures by re-executing the failed job
on some other machine in a network. The master process,
JobTracker, periodically pings the worker nodes, TaskTrack-
ers. JobTracker and TaskTracker are the main processes in
Hadoop, but the original MapReduce has similar processes.
If the master receives no response from a worker, that worker
is marked as failed, and its job is assigned to another node
[6]. Even completed Map tasks have to be re-executed on
failure, since the intermediate results of the Map phase are
on the local disk of the failed machine, and are therefore
inaccessible. Completed Reduce tasks, on the other hand,
do not need to be re-executed, as their output is stored in a
global, distributed file system [2].

In a large cluster, chances of a worker node failing are
quite high. Inexpensive IDE disks are often used as local
storage space for the machines in a cluster, and therefore
disk failures are common in large clusters. On the other
hand, chances for the master node failing are low. That is
why in Hadoop, there is no fault tolerance for JobTracker
failures [6]. If the machine running JobTracker fails, the en-
tire MapReduce job has to be re-executed. To minimize the
chance of the master node failing, JobTracker should be run
on a machine with better quality components and more reli-
able hardware than the worker nodes.

Common cause for a MapReduce operation to take much
more time than expected is a straggler [2]. Straggler is a ma-
chine that takes an unusually long time to complete one of
the last Map or Reduce tasks. This can be caused by errors in
machine, or simply by the machine being busy doing some-
thing else. MapReduce library uses backup tasks to deal
with stragglers. When a MapReduce operation is close to
finish, the master schedules a backup process for remaining
tasks in progress. The task is marked as completed whenever
the primary or the backup task completes. According to the
authors of the original MapReduce paper [2], backup tasks
significantly reduces the time to complete large MapReduce
operations. The paper reports that an example sort program,
presented in the same paper, takes 44% longer to complete
when the backup task mechanism is disabled.

4.2 Performance

Network bandwidth is a valuable resource in a cluster. To
reduce the amount of data needed to transfer across network,
a Combiner function is run on the same machine that ran
a Map task. The Combiner merges the intermediate results
on the local disk, before it is transferred to the correspond-
ing Reduce task. Map tasks often produce many key/value
pairs with the same key. This way those key/value pairs with
the same key are merged, instead of transferring them all
individually. Another way to reduce network bandwidth in
Hadoop is taking advantage of the data replication in HDFS.

When a node asks for some data from the Namenode, the
master node in HDFS, it returns the location of data, which
is closest to the worker node on the network path [6]. To fur-
ther reduce the required bandwidth, the MapReduce frame-
work always tries to run Map tasks on machines that already
has copies of corresponding data blocks on their local disks.

MRBench [9] is a benchmark for evaluating the perfor-
mance of MapReduce systems. MRBench is based on TPC-
H, which is a decision support benchmark, containing in-
dustry related data with 8 tables and 22 queries. MRBench
was implemented in Java, to be supported by the open-source
MapReduce implementation, Hadoop. MRBench supports
three configuration options: database size, the number of
Map tasks and the number of Reduce tasks. However, the
number of Map/Reduce operations is just a suggestion for
the MapReduce, and final number of tasks depends on input
file splits.

MRBench scalability is shown on the experiment that
compares processing of two databases of different sizes. De-
fault number of Map/Reduce tasks are used, and runtime
of the system is measured with databases of size 1GB and
3GB. Experiment shows that runtime for 3GB dataset is al-
most three times longer than that of 1GB dataset on every
query. When experimenting with various number of nodes
for the computation, it is noted that the speedup gain is not
linear. Computation time is calculated with 8 and 16 nodes.
Only processing time, i.e. the time spent processing data on
Map/Reduce phase, is reduced when increasing the number
of nodes. Data management time, the time spent on man-
aging intermediate data and transferring and writing files,
might even be increased due to the doubled number of nodes.
Experiments with different numbers of Map tasks showed
that the optimal number of Map tasks increases as the input
data grows [9].

The authors of Mars [7] compared their implementation
with Phoenix, the MapReduce implementation for multi-
core CPUs. For large datasets, Mars is around 1.5-16x faster
than Phoenix. The speedup varies for different kinds of com-
putational problems. They also implemented Mars to use
CPU instead of GPU, and noted that their CPU-based imple-
mentation achieves at least as good performance as Phoenix.
Mars was also compared to its CPU-based implementation,
which showed that the GPU-based Mars is up to 3.9x faster
than its CPU implementation. The tests were run on a ma-
chine that had a CPU with 4 cores running at 2.4GHz, and a
GPU consisting of 16 multiprocessors, each of which had 8
cores running at 1.35GHz.

The paper describing Phoenix [12] compared the perfor-
mance of their implementation to parallel code written di-
rectly with P-threads. Algorithms that fit well to the key-
based structure of MapReduce, gain the most significant
speedups. On the other hand, fitting an unsuitable algorithm
to the model may lead to significant overhead, caused by key
management, memory allocations, and copying and sorting
data. For algorithms that don’t directly fit into MapReduce
model, P-threads implementations outperform the Phoenix.
They conclude that despite of the implementation, MapRe-
duce leads to good parallel efficiency whenever the problem
is easily expressed with the model, but the model is not gen-
eral enough to support all problem domains.



TKK T-110.5190 Seminar on Internetworking 2009-04-27

When using MapReduce in a cluster of computers, it is
easy to improve computation power by adding new ma-
chines to the network. More nodes means more parallel
Map/Reduce tasks.

5 Conclusion

Google developed the MapReduce framework in order to
simplify parallel data processing on large clusters. In
MapReduce programming model, the user presents the com-
putational problem with two functions, Map and Reduce. In
addition to these functions, user also needs to define some
configurations and parameters for controlling the MapRe-
duce process. The actual parallel computations are per-
formed by the MapReduce library, which assigns Map or
Reduce jobs to the worker nodes, and controls the data dis-
tribution.

There are several benefits in using MapReduce to paral-
lelize computing. The code written by the developer be-
comes simpler, smaller and easier to understand and main-
tain, since the user only writes Map and Reduce functions to
represent the problem. Parallelization, load balancing, fault
tolerance and other complex issues are automatically han-
dled by the MapReduce library. For example, one computa-
tional phase of Google indexing system was expressed with
3800 lines of C++ code before the introduction of MapRe-
duce. When converted to use the MapReduce programming
model, same phase could be expressed with approximately
700 lines of code [2].

The original MapReduce framework was designed to par-
allelize computing on large clusters of commodity machines,
and it is mainly in internal use at Google. Hadoop is an open-
source implementation of MapReduce that is similar to the
Google’s implementation. There are also other implemen-
tations of MapReduce framework, aimed for different envi-
ronments. For example, Phoenix is an implementation for
shared-memory systems, i.e. multi-core and multiprocessor
machines. Mars is another implementation, aimed to paral-
lelize computing on graphics processors.

Using the computation power of GPU with MapReduce
is an interesting issue. GPUs are ten times as powerful as
CPUs [7]. Moreover, the new GPU models have over hun-
dred of processor cores, compared to two or four cores of the
CPUs. Some graphics cards can even be used in parallel, to
achieve better performance. It would be interesting to extend
Mars, the MapReduce framework for GPUs, so that it would
support many parallel graphics cards. This way, an excel-
lent performance could be achieved with a single computer.
Another thing worth experimenting could be a MapReduce
framework for a cluster, that uses the GPUs (in addition to
CPU) of the nodes to process the data.

References

[1] Apache. Hadoop documentation,
http://hadoop.apache.org/core. 2008.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters.Commun. ACM,
51(1):107–113, 2008.

[3] J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce
for data intensive scientific analyses.eScience, 2008.
eScience ’08. IEEE Fourth International Conference
on, pages 277–284, Dec. 2008.

[4] J. Feldman. Using many machines to handle an enor-
mous error-correcting code.Information Theory Work-
shop, 2006. ITW ’06 Punta del Este. IEEE, pages 180–
182, March 2006.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. InSOSP ’03: Proceedings of the nine-
teenth ACM symposium on Operating systems princi-
ples, pages 29–43, New York, NY, USA, 2003. ACM.

[6] O. J. Haggarty, W. J. Knottenbelt, and J. T. Bradley.
Distributed response time analysis of gspn models with
mapreduce.Performance Evaluation of Computer and
Telecommunication Systems, 2008. SPECTS 2008. In-
ternational Symposium on, pages 82–90, June 2008.

[7] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a mapreduce framework on graphics
processors. InPACT ’08: Proceedings of the 17th inter-
national conference on Parallel architectures and com-
pilation techniques, pages 260–269, New York, NY,
USA, 2008. ACM.

[8] C. Jin, C. Vecchiola, and R. Buyya. Mrpga: An exten-
sion of mapreduce for parallelizing genetic algorithms.
eScience, 2008. eScience ’08. IEEE Fourth Interna-
tional Conference on, pages 214–221, Dec. 2008.

[9] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y.
Yeom. Mrbench: A benchmark for mapreduce frame-
work. Parallel and Distributed Systems, 2008. ICPADS
’08. 14th IEEE International Conference on, pages 11–
18, Dec. 2008.

[10] R. Lammel. Google’s mapreduce programming model
– revisited. Science of Computer Programming,
70(1):1 – 30, 2008.

[11] A. McNabb, C. Monson, and K. Seppi. Parallel pso us-
ing mapreduce.Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, pages 7–14, Sept. 2007.

[12] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for multi-core
and multiprocessor systems.High Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th In-
ternational Symposium on, pages 13–24, Feb. 2007.

[13] T. Xia. Large-scale sms messages mining based on
map-reduce.Computational Intelligence and Design,
2008. ISCID ’08. International Symposium on, 1:7–12,
Oct. 2008.

[14] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data process-
ing on large clusters. InSIGMOD ’07: Proceedings



TKK T-110.5190 Seminar on Internetworking 2009-04-27

of the 2007 ACM SIGMOD international conference
on Management of data, pages 1029–1040, New York,
NY, USA, 2007. ACM.

[15] J. H. Yeung, C. Tsang, K. Tsoi, B. S. Kwan, C. C.
Cheung, A. P. Chan, and P. H. Leong. Map-reduce
as a programming model for custom computing ma-
chines. Field-Programmable Custom Computing Ma-
chines, 2008. FCCM ’08. 16th International Sympo-
sium on, pages 149–159, April 2008.


