Parallel data processing with MapReduce

Tomi Aarnio
Helsinki University of Technology
tom . aarni o@wut. fi

Abstract jobs are run daily on Google’s clusters, processing morne tha
twenty Petabytes of data every day [2].
MapReduce is a parallel programming model and an assoThe idea of MapReduce is to hide the complex details of
ciated implementation introduced by Google. In the prparallelization, fault tolerance, data distribution anad bal-
gramming model, a user specifies the computation by t&acing in a simple library [2]. In addition to the computa-
functions, Map and Reduce. The underlying MapReducetibnal problem, the programmer only needs to define param-
brary automatically parallelizes the computation, and-haaters for controlling data distribution and parallelisro]j1
dles complicated issues like data distribution, load b&alan The original MapReduce library was developed by Google
ing and fault tolerance. The original MapReduce implén 2003, and was written in C++ [2]. Google’s implementa-
mentation by Google, as well as its open-source countgsn is designed for large clusters of machines connectad in
part, Hadoop, is aimed for parallelizing computing in larggetwork. Other implementations have been introduced since
clusters of commodity machines. Other implementations figie original MapReduce. For example, Hadoop [1] is an
different environments have been introduced as well, sugfen-source implementation of MapReduce, written in Java.
as Mars, which implements MapReduce for graphics priogke Google’s MapReduce, Hadoop uses many machines in
cessors, and Phoenix, the MapReduce implementation gajluster to distribute data processing.
shared-memory systems. The parallelization doesn’t necessarily have to be per-
This paper gives an overview of MapReduce programrmed over many machines in a network. There are differ-
ming model and its applications. We describe the workflagnt implementations of MapReduce for parallelizing com-
of MapReduce process. Some important issues, like fapiliting in different environments. Phoenix [12] is an imple-
tolerance, are studied in more detail. We also take a lookwaéntation of MapReduce, which is aimed at shared-memory,
the different implementations of MapReduce. multi-core and multiprocessor systems, i.e. single comput
ers with many processor cores. Mars [7], on the other hand,
KEYWORDS: MapReduce, Hadoop, parallel data process+ vapReduce framework for graphics processors (GPUS).
ing, distributed computing, clusters GPUs are massively parallel processors with much higher
computation power and memory bandwidth than CPUs, but
. they are harder to program since their architecture and in-
1 Introduction terfaces are designed specifically for graphics applinatio
MapReduce framework hides this complexity, so program-
MapReduce [2] is a programming model created by Googlgers can easily harness the computation power of the GPU
It was designed to simplify parallel data processing ondargy, gata processing tasks.
clusters. First version of the MapReduce library was wiitte eyt section gives more detailed information about the

in February 2003. The programming model is inspired bthi’apReduce framework and programming model, as well

map and reduce primitives found in Lisp and other functiongd s applicability to various problem domains. Section 3

languages. presents different implementations of MapReduce, and Sec-
Before developing the MapReduce framework, Googign 4 evaluates the performance, fault tolerance and other

used hundreds of separate implementations to processagdes of MapReduce implementations. Finally, Section 5
compute large datasets. Most of the computations were relgncludes the paper.

tively simple, but the input data was often very large. Hence
the computations needed to be distributed across hundreds
of computers in order to finish calculations in a reasonalfe |\ apReduce
time. MapReduce is highly efficient and scalable, and thus
can be used to process huge datasets. . 2.1 Programming model

When the MapReduce framework was introduced, Google
completely rewrote its web search indexing system to use MapReduce is a programming model introduced by Google.
new programming model. The indexing system produces this inspired by the map and reduce primitives found in many
data structures used by Google web search. There is nfarectional programming languages. MapReduce framework
than 20 Terabytes of input data for this operation. At firsbnsists of user supplied Map and Reduce functions, and
the indexing system ran as a sequence of eight MapRedageimplementation of MapReduce library, that automati-
operations, but several new phases have been added statlg handles data distribution, parallelization, loadaba-
then. Overall, an average of hundred thousand MapRedingg fault tolerance and other common issues. In addition, a

TKK T-110.5190 Seminar on Internetworking 2009-04-27

When a worker node is assigned a Map task, it reads the
|| corresponding input split and passes the key/value pairs to
read the user-defined Map function. The intermediate key/value
pairs are stored in the memory, and periodically written to
A Map phase local disk, partitioned into R pieces. User-defined pantiti
@ W ing function (e.g. hash(key) mod R) is used to produce R
partitions. Locations of the intermediate key/value panes
passed back to the master, that forwards the information to
Intermediate files the Reduce workers when needed [2].
There are R reduce tasks. When a reduce worker receives
the location of intermediate results from the master, itisea

Input files

local write

remote read

W @ Reduce phase all the intermediate data for its partition from the locadldi
of the Map worker. Then it iterates over the intermediate
rite pairs, and produces the output, which is appended to the fi-
_ nal output file for the corresponding reduce partition. When
. |:| Output files all Map and Reduce are finished, master wakes up the user

program, and the code execution returns from the MapRe-
duce call back to the user code. After successful completion
of the MapReduce, the output is stored in R output files, one
for each Reduce task. File names of the output files are spec-
ified by the user, and they can be used for example as an

user needs to write some configurations, like names of {Rgut for another MapReduce operation.
input and output files, or some other, optional tuning param-

eters. The configurations also define how the input datepip Example

splitted into key/value pairs.

In MapReduce programming model, users specify th
calculations as two functions, Map and Reduce. The M
function takes a key/value pair as an input, and outputs a
of intermediate key/value pairs. Reduce takes as an in
a key and a list of values assigned for it. Input values f
Reduce are automatl_cally grouped from intermediate rz?,SLIJIEk key: document name
by the MapReduce library. After the necessary Map tasks val ue: document contents
have been completed, the library takes a intermediate key, '
and groups it together with all the values associated W'ithrirta (String key, String val ue)
The Reduce function takes an intermediate key and the v. ué) '
list assigned for it as an mput.. It merges the values the Yfor each word win val ue:
the user has specified in the implementation of the Reduce . . Wy

:) emtlntermedi ate(w, "1");
function, and produces a smaller set of values. Typlcaily
only zero or one output is produced per Reduce task.

The programming model is knowingly restricted, as it only, key: a word
provides map and reduce functions to be implemented by \ 5| ues: |ist of counts for the word
user. Because of the restrictions, MapReduce can offer g
simple interface for users to parallelize and distributseo educe(String key, Iterator val ues)
putations [2]. Restricted programming model is good, bg-
cause developers can focus on formulating the actual prob; nt result = 0:
lem with two simple functions. However, restrictions make ¢ or each v in val ues:
it hard to express certain problems with the programming ;asylt += Parsel nt (V)
model. Still most data processing tasks can be effectivelygp; (result);
implemented with MapReduce. Itis easy to add new MapRe-
duce phases to existing MapReduce operations. By adding
MapReduce phases, more complicated problems can be eXx-he Map function iterates through the document it re-
pressed with the programming model. ceives as parameter, and simply emits the string "1” for ev-

Fig. 1 represents the workflow in a MapReduce executiary word in the document. Intermediate results are a set of
When running the user program, the MapReduce library fikgty/values pairs, where keys are now different words found
splits the input data into M pieces, which are typically 16a the input documents, and values is a list of emitted values
64MB per piece. Next the library runs many copies of tifer each word. Before the intermediate results are passed to
program on the machines in a cluster. One of the copieshie Reduce tasks, values for different keys are grouped from
the master node, which assigns the Map and Reduce takshe Map tasks by the MapReduce library. The Reduce
to the worker nodes. There are M Map tasks to run, one fanction takes a key and the list of values for it. Key is a
each input data split. word, and values is a list of "1™'s, one for each occurrence

Figure 1: MapReduce execution overflow

'pnple and popular example of using MapReduce is a prob-
of counting a number of distinct words in a large col-
Igg{ion of documents. This example is from the original
pReduce paper [2]. Below is the pseudocode for the Map
ggﬂd Reduce functions.

TKK T-110.5190 Seminar on Internetworking 2009-04-27

of the word in the input documents. Reduce just adds thésms [6]. Calculation of response times in such models can
values together, and the resulting count is emitted as an dig done in parallel using MapReduce.

put. Most scientific data analyses evaluates huge amounts

of data. High Energy Physics experiments produce vast

N amounts data, that needs to be analyzed. For example,

2.3 Applications The Large Hadron Collider is expected to produce tens of

Since the development of MapReduce framework, there fzabytes of already filtered data in a year [3]. Another ex-
been quite a lot of research into using MapReduce in dNPl€ is from the field of astronomy, where the Large Syn-
ferent kinds of problem domains [8, 11, 3, 4, 6, 13]. Man?/ptic Survey Telescope produces about 20 Terabytes of data
computations can be done simply by using the MapRed &Y night. It is clear that, to process and analyze such

programming model, but there are some that can’t be &mounts of data, many computers and efficient paralleliz-
pressed with Map and Reduce functions ing routines must be used. MapReduce programming model

For example, the iteration style of Genetic AIgorithm%an be adapted to parallelize data intensive scientificyanal
{ . MapReduce is well suitable for scientific calculations

cannot directly be expressed with Map and Reduce functicifs . i~
[8]. Genetic Algorithms are a class of evolutionary algérjostly because of its fault tolerance and scalability.
rithms used in fields such as chemistry and biology. Paral-

lel Genetic Algorithms have been adopted to improve effi: .

ciency, since processing Genetic Algorithms generall;asl;a% I mplementatlons

very long time for large problems. MapReduce needs to be

extended to support such algorithms, which is achieved 31 Google’'s M apReduce

adding a second reduce phase after the iterations,andﬂacl.i_(?1 riginal MapRed implementation by Gooale is tar
for coordinating the execution of iterations. € original Mapieduce Impiementation by L>00gie IS tar-

. . ted for large clusters of networked machines. First ver-
MapReduce can be used in SMS message mining [1%1)n of the MapReduce library was written in February 2003,

SMS. messages are popularand widely used for simple “PUt some significant changes were made to it later that year.
munication between people. Number of SMS messages Sﬁl]’]t

.“The MapReduce library automatically handles paralleliza-
in a month in any country is very large, and so is the origl P y y P

A S gn and data distribution. Since the developers don't need
nal dataset used in mining. Finding the most popular S) :
10 Jyorry about things like parallel and network program-

messages can be valuable information, but since the datas . .
ming, they can focus on the actual problem, i.e. presenting

is so large, parallelization is needed to complete this m;nsl}he computational problem with Map and Reduce functions.

reasonable time. Hadoop, the open-source implementatio s .
of MapReduce, is used as a framework in SMS mining. Pro-Bata is distributed and saved on local disks of networked

chines. Google File System (GFS) [5] is a distributed
it

cessing of the messages is done in three steps. First the (#ﬂ svstern used to manaae the data stored across the clus-
inal dataset is pre-processed and grouped by senders’eng y 9

numbers. This is done by first MapReduce process. Secé?]rdGFS mal_<es_ fe'o"cas of data blocks on multiple nodes for
. |{H8roved reliability and fault tolerance.

MapReduce process does a transformation to regroup d d desianed . hine fail

dataset by short content keys, and finally the third MapRe->> and MapReduce are designed to view machine fail-

duce phase is needed to extract the popular messages. ures as a default rather than an anomaly. MapReduce is

Error-correcting codes are useful in many situations. jghly scalable, and therefore it can be run on clusters com-

data file needs to be saved on some faulty medium, the H%sing of thousands of low-cost machines, built on unreli-
can be encoded with an error-correcting code. If the file'c hardware. MapReduce library can assume that at any

is corrupted while stored, there is a chance it can be pQint, certain percentage of worker nodes will be unavail-

stored when decoding the error-correcting code. Encodfig®:

very large files is a challenge. Standard encoding and de-

coding algorithms can’t handle very large block lengthatthg 2 H adoop

doesn'’t allow random access to the data. Also encoding

should be done without breaking the file into smaller piecé$adoop [1] is a MapReduce implementation by Apache. The

since error-correcting achieves better performance ayelaarchitecture of Hadoop is basically the same as in Google’s

files. Feldman [4] uses Google’s computing infrastructurig)plementation, and the main difference is that Hadoop is an

along with Google’s MapReduce implementation, to encodpen-source implementation.

and decode a very large Tornado code. Tornado codes afeata is distributed across the machines in network us-

error-correcting codes with linear-time encoding and decdng the Hadoop Distributed File System (HDFS). HDFS dis-

ing algorithms. Tornado code can be applied to huge filebutes data on computers around the cluster, and creates

using parallelization offered by MapReduce framework. multiple replicas of data blocks for better reliability. ¢ad
Particle Swarm Optimization algorithms can be naturaltirives of networked machines are used to store data, which

expressed with MapReduce [11]. When parallelized, Partiakes the data available to other machines in network.

cle Swarm Optimization algorithms can be used to optimizeHDFS consists of two main processes, the Namenode and

functions, that have to evaluate large amounts of data. Gamumber of Datanodes [1]. The optional Secondary Namen-

eralised Stochastic Petri nets, on the other hand, are a pmje can also be used as a back-up process for the Namenode.

ular graphical modelling formalism, that can be used in tAidhe Namenode runs on a single master machine. It has in-

performance analysis of computer and communications sfamation about all the machines in the cluster, and detéils

TKK T-110.5190 Seminar on Internetworking 2009-04-27

the data blocks stored on the machines in the cluster. Datgraphics rendering pipeline. An example of such language is
ode processes run on all the other machines in the clusi&v]DIA CUDA, which was also used to implement Mars.
and they communicate with the Namenode to know when toThe purpose of the Mars framework is to hide all the com-
fetch data on their local hard drive. plex details of the GPU. Threads are handled by the run-
The MapReduce framework of Hadoop consists of singiene library. Characteristics of the user defined Map and Re-
JobTracker and a number of TaskTracker processes [1]. Tliee functions, and the number of multiprocessors and other
JobTracker usually runs on the same master machine ascibimputation resources are taken into account when deciding
Namenode. Users send their MapReduce jobs to the Jibte- number of threads. GPUs don’t support dynamic thread
Tracker, which splits the work between the machines in teeheduling, so it is important to allocate threads coryectl
cluster. Each other machine in cluster runs a TaskTrackefore executing the MapReduce process [7]. Since GPUs
process. TaskTracker communicates with the JobTrackim't support dynamic memory allocations, arrays are used
which assigns it a Map or Reduce task when possible. as the main data structure in Mars. Space for all the input,
Hadoop can be configured to run multiple simultaneoiiermediate and result data must be allocated on the device
Map tasks on single nodes [6]. In multi-core systems thisrgemory before executing the program on GPU. Three kinds
a great benefit, as it allows making full use of all cores. ~ Of arrays are used to save the input data and results. Key and
value arrays contain all the keys and values, and a directory
index array consists of entries for each key/value paire®ir
3.3 Phoenix tory index entries are in format <key offset, key size, value
offset, value size>, and they are used to fetch keys or values
Phoenix [12] is a MapReduce implementation aimed fgiom the corresponding arrays.
shared-memory systems. It consists of MapReduce propars workflow starts with preprocesing the raw input data
gramming model and associated runtime library thathandiﬁt% key/value pairs. CPU is exploited for this task, since
resource management, fault tolerance and other issues ag§{8s don't allow direct access to the disk [7]. The key/value
matically. It uses threads to create parallel Map and _Redlﬂ)%ﬁrs are then copied to the device memory of the GPU, and
tasks. Phoenix can be used to parallelize data intensive c@ffiged into chunks, such that the number of chunks is equal
putations on multi-core and multiprocessor computers. 4 the number of threads. Dividing the input data evenly on
The principles in Phoenix implementation are basicalfije threads makes this implementation load-balancedr Afte
the same as in original MapReduce, except instead of lagge Map stage is done, the intermediate key/value pairs are
clusters, it is aimed for shared-memory systems. Overheggged. In Reduce stage, the split operation divides thedor
caused by task spawning and data communications canfi€rmediate key/value pairs into multiple chunks, sudt th
minimized when working in a shared-memory environmerp)tairs with the same key belong to same chunk. Again, one

The runtime uses P-threads to spawn parallel Map or Redig@ad is responsible of one chunk, so the number of chunks
tasks, and schedules tasks dynamically to available proGesame as the number of threads.
sors [12].

In Phoenix, in addition to Map and Reduce functions, the
user provides a function that partitions the data beforbeat® Map-Reduce-Merge
step, and a function that.|mplements key comparison. T %p—Reduce—Merge [14] can be considered as an extension
programmer calls phoenix_scheduler() to start the MapRe

duce process. The function takes configuration struct as Or%he MapReduce programming model, rather than an im-

input, in which the user specifies the user-provided furp_ementatlon of MapReduce. Original MapReduce program-

tions, pointers to input/output buffers and other optidrse ming model does not directly support processing ”.‘“'“p'e
rtﬁlated heterogeneous datasets. For example, relatipnal o

scheduler controls the runtime, and manages the threadsttarations like joining multiple heterogeneous dataseds, c
run all the Map and Reduce tasks. Phoenix spawns thregdas ' J 9 P 9

on all available cores, trying to take full advantage of tf}\ﬁe doge(;mth I\'/\IAapRe(_juce by addlng ext:ja :\/Ia;]pReducbe stepz.
system [12]. ap-Reduce-Merge is an improved model, that can be use
to express relational algebra operators and join algogthm
This improved framework introduces a new Merge phase,
3.4 Mars that can join reduced outputs, and a naming and configur-
ing scheme, that extends MapReduce to process heteroge-
Mars [7] implements the MapReduce framework for grapheous datasets simultaneously [14]. The Merge function is
ics processors (GPU). GPUs are massively parallel procesich like Map or Reduce. It is supplied by the user, and
sors with 10x higher computation power and memory barititakes two pairs of key/values as parameters. Unlike Map,
width than CPUs. Since GPUs are special purpose prodést reads a key/value pair, or Reduce, that processese valu
sors designed for gaming applications, their programmiligf for a key, Merge reads data (key/values pairs) from two
languages lack support for some basic programming strdistinguishable sources.
tures, like variable-length data types or recursion. Addi- Workflow in MapReduce programs is restricted to two
tionally, different GPU vendors have different architeetu phases, i.e. mapping and reducing. Users have very few
details in their processors, which makes programming ev@stions to configure this workflow. Adding a new Merge
more difficult. Several GPGPU (General-Purpose compphase creates many new workflow combinations, that can
ing on GPUs) languages have been introduced, that carhbadle more advanced data-processing tasks. Furthermore,
used to write GPU programs without the knowledge of thdap-Reduce-Merge provides a configuration API for users

TKK T-110.5190 Seminar on Internetworking 2009-04-27

to build custom workflows. Map-Reduce-Merge can be usé¢hen a node asks for some data from the Namenode, the

recursively, because the workflow allows outputs to be usaéster node in HDFS, it returns the location of data, which

as an input for next Map-Reduce-Merge process. is closest to the worker node on the network path [6]. To fur-
ther reduce the required bandwidth, the MapReduce frame-
work always tries to run Map tasks on machines that already

4 Evaluation has copies of corresponding data blocks on their local disks
MRBench [9] is a benchmark for evaluating the perfor-
4.1 Fault tolerance mance of MapReduce systems. MRBench is based on TPC-

MapReduce handles failures by re-executing the failed L&Whmh is a decision support benchmark, containing in-

on some other machine in a network. The master proc stry related data with 8 tables and 22 queries. MRBench

JobTracker, periodically pings the worker nodes, TaskiradVas implementedin Java, to be supported by the open-source
ers. JobTracker and TaskTracker are the main processe%:zrpReduqe |mplement_at|on, Hadoop. MRBench supports
Hadoop, but the original MapReduce has similar process ee configuration options: database size, the number of
If the master receives no response from a worker, that work&gP tasks and the number of Reduce tasks. However, the
is marked as failed, and its job is assigned to another ngiynPer of Map/Reduce operations is just a suggestion for
[6]. Even completed Map tasks have to be re-executedﬁﬁ Ma_LpReduce, and final number of tasks depends on input
failure, since the intermediate results of the Map phase fjg splits.
on the local disk of the failed machine, and are thereforeMRBench scalability is shown on the experiment that
inaccessible. Completed Reduce tasks, on the other h&@inpares processing of two databases of different sizes. De
do not need to be re-executed, as their output is stored iff@lt number of Map/Reduce tasks are used, and runtime
global, distributed file system [2]. of the system is measured with databases of size 1GB and
In a large cluster, chances of a worker node failing a#&>B- Experiment shows that runtime for 3GB dataset is al-
quite high. Inexpensive IDE disks are often used as lo®apst three times longer than that of 1GB dataset on every
storage space for the machines in a cluster, and theref@#g"y- When experimenting with various number of nodes
disk failures are common in large clusters. On the otHéF the computation, it is noted that the speedup gain is not
hand, chances for the master node failing are low. Thatirear. Computation time is calculated with 8 and 16 nodes.
why in Hadoop, there is no fault tolerance for JobTrackEly processing time., i.e. the time spent procgssing data on
failures [6]. If the machine running JobTracker fails, tme e Map/Reduce phase, is reduced when increasing the number
tire MapReduce job has to be re-executed. To minimize thnodes. Data management time, the time spent on man-
chance of the master node failing, JobTracker should be A#iNg intermediate data and transferring and writing files,
on a machine with better quality components and more rdliight even be increased due to the doubled number of nodes.
able hardware than the worker nodes. Experiments with different numbers of Map tasks showed
Common cause for a MapReduce operation to take mdBat the optimal number of Map tasks increases as the input
more time than expected is a straggler [2]. Straggler is a @i grows [9].
chine that takes an unusually long time to complete one ofThe authors of Mars [7] compared their implementation
the last Map or Reduce tasks. This can be caused by erronith Phoenix, the MapReduce implementation for multi-
machine, or simply by the machine being busy doing son@re CPUs. For large datasets, Mars is around 1.5-16x faster
thing else. MapReduce library uses backup tasks to déwn Phoenix. The speedup varies for different kinds of com-
with stragglers. When a MapReduce operation is closepigtational problems. They also implemented Mars to use
finish, the master schedules a backup process for remairfiig}J instead of GPU, and noted that their CPU-based imple-
tasks in progress. The task is marked as completed when#ventation achieves at least as good performance as Phoenix.
the primary or the backup task completes. According to théars was also compared to its CPU-based implementation,
authors of the original MapReduce paper [2], backup taskbich showed that the GPU-based Mars is up to 3.9x faster
significantly reduces the time to complete large MapReduben its CPU implementation. The tests were run on a ma-
operations. The paper reports that an example sort prograhine that had a CPU with 4 cores running at 2.4GHz, and a
presented in the same paper, takes 44% longer to compfeRdJ consisting of 16 multiprocessors, each of which had 8

when the backup task mechanism is disabled. cores running at 1.35GHz.
The paper describing Phoenix [12] compared the perfor-
4.2 Performance mance of their implementation to parallel code written di-

rectly with P-threads. Algorithms that fit well to the key-
Network bandwidth is a valuable resource in a cluster. Based structure of MapReduce, gain the most significant
reduce the amount of data needed to transfer across netwspledups. On the other hand, fitting an unsuitable algorithm
a Combiner function is run on the same machine that remthe model may lead to significant overhead, caused by key
a Map task. The Combiner merges the intermediate resuftanagement, memory allocations, and copying and sorting
on the local disk, before it is transferred to the corresporthta. For algorithms that don’t directly fit into MapReduce
ing Reduce task. Map tasks often produce many key/valedel, P-threads implementations outperform the Phoenix.
pairs with the same key. This way those key/value pairs witlhey conclude that despite of the implementation, MapRe-
the same key are merged, instead of transferring themdlte leads to good parallel efficiency whenever the problem
individually. Another way to reduce network bandwidth iiis easily expressed with the model, but the model is not gen-
Hadoop is taking advantage of the data replication in HDFSal enough to support all problem domains.

TKK T-110.5190 Seminar on Internetworking

2009-04-27

When using MapReduce in a cluster of computers, it i§2]
easy to improve computation power by adding new ma-
chines to the network. More nodes means more parallel
Map/Reduce tasks. 3]

5 Conclusion

: (4]
Google developed the MapReduce framework in order to
simplify parallel data processing on large clusters. In
MapReduce programming model, the user presents the com-
putational problem with two functions, Map and Reduce. In
addition to these functions, user also needs to define sorfid
configurations and parameters for controlling the MapRe-
duce process. The actual parallel computations are per-
formed by the MapReduce library, which assigns Map or
Reduce jobs to the worker nodes, and controls the data d't%—]
tribution.

There are several benefits in using MapReduce to paral-
lelize computing. The code written by the developer be-
comes simpler, smaller and easier to understand and main-
tain, since the user only writes Map and Reduce functions to
represent the problem. Parallelization, load balanciagltf [7]
tolerance and other complex issues are automatically han-
dled by the MapReduce library. For example, one computa-
tional phase of Google indexing system was expressed with
3800 lines of C++ code before the introduction of MapRe-
duce. When converted to use the MapReduce programming
model, same phase could be expressed with approximatTgﬁ
700 lines of code [2].

The original MapReduce framework was designed to par-
allelize computing on large clusters of commodity machines
and itis mainly in internal use at Google. Hadoop is an open-
source implementation of MapReduce that is similar to th{9]
Google’s implementation. There are also other implemen-
tations of MapReduce framework, aimed for different envi-
ronments. For example, Phoenix is an implementation for
shared-memory systems, i.e. multi-core and multiproagesso
machines. Mars is another implementation, aimed to paral-
lelize computing on graphics processors. [10

Using the computation power of GPU with MapReduce
is an interesting issue. GPUs are ten times as powerful as
CPUs [7]. Moreover, the new GPU models have over hun-]
dred of processor cores, compared to two or four cores of the
CPUs. Some graphics cards can even be used in parallel, to
achieve better performance. It would be interesting torekte
Mars, the MapReduce framework for GPUSs, so that it would?]
support many parallel graphics cards. This way, an excel-
lent performance could be achieved with a single computer.
Another thing worth experimenting could be a MapReduce
framework for a cluster, that uses the GPUs (in addition to
CPU) of the nodes to process the data. [13]

References

[14]
[1] Apache. Hadoop documentation,

http://hadoop.apache.org/core. 2008.

J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clustersCommun. ACM,
51(1):107-113, 2008.

J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce
for data intensive scientific analysesScience, 2008.
eScience '08. |IEEE Fourth International Conference

on, pages 277-284, Dec. 2008.

J. Feldman. Using many machines to handle an enor-
mous error-correcting codénformation Theory Work-
shop, 2006. ITW’ 06 Punta del Este. IEEE, pages 180—
182, March 2006.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. InSOSP '03: Proceedings of the nine-
teenth ACM symposium on Operating systems princi-
ples, pages 29-43, New York, NY, USA, 2003. ACM.

0. J. Haggarty, W. J. Knottenbelt, and J. T. Bradley.
Distributed response time analysis of gspn models with
mapreducePerformance Evaluation of Computer and
Telecommunication Systems, 2008. SPECTS 2008. In-
ternational Symposiumon, pages 82—-90, June 2008.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a mapreduce framework on graphics
processors. IRACT '08: Proceedingsof the 17thinter-
national conference on Parallel architecturesand com-
pilation techniques, pages 260-269, New York, NY,
USA, 2008. ACM.

C. Jin, C. Vecchiola, and R. Buyya. Mrpga: An exten-
sion of mapreduce for parallelizing genetic algorithms.
eScience, 2008. eScience '08. |IEEE Fourth Interna-
tional Conference on, pages 214-221, Dec. 2008.

K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y.
Yeom. Mrbench: A benchmark for mapreduce frame-
work. Parallel and Distributed Systems, 2008. |CPADS
'08. 14th |EEE International Conference on, pages 11—
18, Dec. 2008.

] R. Lammel. Google’s mapreduce programming model

— revisited. Science of Computer Programming,
70(1):1 - 30, 2008.

A. McNabb, C. Monson, and K. Seppi. Parallel pso us-
ing mapreduceEvol utionary Computation, 2007. CEC
2007. |EEE Congress on, pages 7-14, Sept. 2007.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for multi-core
and multiprocessor systemsligh Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th In-
ternational Symposiumon, pages 13-24, Feb. 2007.

T. Xia. Large-scale sms messages mining based on
map-reduce.Computational Intelligence and Design,
2008. ISCID ' 08. International Symposiumon, 1:7-12,
Oct. 2008.

H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data process-
ing on large clusters. ®IGMOD '07: Proceedings

TKK T-110.5190 Seminar on Internetworking 2009-04-27

of the 2007 ACM S GMOD international conference
on Management of data, pages 1029-1040, New York,
NY, USA, 2007. ACM.

[15] J. H. Yeung, C. Tsang, K. Tsoi, B. S. Kwan, C. C.
Cheung, A. P. Chan, and P. H. Leong. Map-reduce
as a programming model for custom computing ma-
chines. Field-Programmable Custom Computing Ma-
chines, 2008. FCCM ’08. 16th International Sympo-
siumon, pages 149-159, April 2008.

