Mobile Agent based Architecture for Wireless Sensor Networks

Rijubrata Bhaumik
Helsinki University of Technology
rbhaumik@cc.hut.fi

Abstract

Wireless Sensor Networks(WSN) have emerged as one of
the key growth areas for wireless networking and comput-
ing technologies. Usually in sensor networking, traditional
client-server computing architecture is employed where data
at multiple nodes is transfered to a processing element. In
the mobile-agent based computing paradigm, the motto is
to move the computation to the data rather than data to the
computation. Using this paradigm, the communication cost,
specially over low bandwidth links is greatly reduced. In
this paper we study the recently proposed paradigm known
as mobile agent based distributed sensor network (MADSN)
by Qi et. al [6]. The paper also addresses the advantages and
the challenges associated with this paradigm.

KEYWORDS: mobile agents, Wireless sensor networks

1 Introduction

Wireless Sensor Networks(WSN) have emerged as a new
computing paradigm spearheading the cause of pervasive
computing. WSN consist of tiny sensors to sense the en-
vironment with the goal of collecting information to make
an informed decision. Example applications include habitat
monitoring surveillance, medical care and structural moni-
toring. The lengthy deployment intervals and not so con-
ducive environment implies restraint on energy usage as hu-
man interaction might not be possible. So life time of a
node is effectively determined by its battery life. The main
drainage of battery is due to transmitting and receiving data
among nodes and the processing elements. Apart from bat-
tery life there is a constraint on bandwidth as the sensors are
usually deployed on a low bandwidth wireless link. So data
movement should be as minimum as possible. Depending
upon the inter node distance, there is a lot of redundancy in
the data collected. Some amount of redundancy is required
to add robustness to the system as the nodes themselves are
not very reliable, so it should be a part of the optimal deploy-
ment strategy. By moving the software code (Mobile Agent)
itself to the nodes a large amount of the spatial redundancy in
closely located nodes can be eliminated. The Mobile Agent
(MA) is a special kind of software which visits the network
either periodically or on demand and performs data process-
ing autonomously while migrating from node to node.

The need to reprogram the wireless sensor network may
arise due to changes in application requirements or bug fixes.
Over a period of time, protocols keep changing due to per-
formance or security. We would also want to use the sensor

data for a variety of applications. A “one-deployment, mul-
tiple applications” trend hence demands a dynamic approach
to programmability. So instead of flashing the nodes with
the same code and doing a remote code update from time
to time to all nodes might not be a good option. A better
option might be to introduce MAs in the system which can
hop from node to node within the same network, do the rele-
vant processing and then transmit the result back preferably
from the last node it needs to visit or a node in the nearby
neighborhood of the last node having the highest battery life
left. MAs also add extensibility and scalability to the net-
work as the MAs can be programmed to support adaptive
network load balancing or to carry out task adaptive fusion
processes. In the client server model sensor data is passed
to a central location for fusion. Given the vulnerability of
the wireless link, transmitting all non critical sensor data can
compromise the security. So the incremental fusion done by
a MA at every hop might be a better solution. Traditionally,
in Distributed Sensor Networks (DSN), the sensor nodes are
flashed with the code before deployment. If we need to re-
program the network, the code update approach which is de-
scribed in the next section in detail is followed. This process
is bandwidth intensive and hence not energy efficient. So,
the MA based approach is gaining prominence. The follow-
ing table shows the main difference between a DSN and a
MADSN.

1.1 DSN vs MADSN

Table 1.
Features DSN MADSN
Element moving in the network | Data Computation
Bandwidth High Low
Scalable? No Yes
Extensible? No Yes
Affected by network reliability? | Yes Yes
Fault Tolerable? Yes Yes

Table 1: DSN vs MADSN

2 Related Work

A lot of work in the area of wireless sensor network in re-
cent times has been focusing on providing high level abstrac-
tions of complex low level concepts to application program-
mers. As the usage of wireless sensor networks becomes

TKK T-110.5190 Seminar on Internetworking

2009-04-27

more varied, the need for middlewares for complexity en-
capsulation is even more felt. An approach to develop Sen-
sor network middleware has been proposed by C.Fok et al[5]
in the form of Agilla, which proposes an agent based ap-
proach. UCLA’s SensorWare [4] is a system which falls
under the category of active sensor frameworks, which are
very close to the mobile agent based approach. In Berkley,
a similar framework called Maté [16] has been developed.
It is a tiny communication-centric virtual machine built on
top of TinyOS [8]. Maté and SensorWare share the same
goal and objective, but differ each other in implementation.
Maté targets the Berkley designed family of sensor nodes
called motes which are extremely resource constrained. Pro-
gramming for Maté is also a difficult task and due to ultra
compact instruction set, even a medium size task may lead
to a big program. SensorWare targets a richer platform usu-
ally having a 1 Mbyte program memory and a 128 Kbytes
of RAM. It also allows easy programming with a high level
scripting language. MIT’s Pushpin [11] is the realization of
the “paintable computer” programming targeting hardware
even more resource constrained than the motes. In all the
above 3 frameworks, the code is made autonomously mobile
enabling its migration and replication throughout the net-
work without user intervention. From an application point of
view, there exists systems like [10], where researchers have
already built a mobile agent based WSN to monitor the vital
signs in a patient.

3 WASN Programmability

There is an inherent need to reprogram the wireless sensor
network due to requirement changes, so while designing the
wireless sensor network we need to focus on the dynamic
programmability aspect of the sensor network. There are
three main ways of dynamically programming the wireless
sensor network - i) the code update approach, ii) database
model approach and iii) mobile agent based approach.

3.1 Code Update approach

The code executing in the nodes is dynamically updated
where a central entity is responsible for the control of the
tasks. The update can take place on various abstraction lev-
els, lowest being a flash memory update or re flashing, or
at a higher level which use a more modular approach al-
lowing multiple users, like Impala [1]. Often changes are
incremental and small, so a full flash update is expensive.
So, Reijers et al [18] devised a Unix diff-like approach us-
ing various patch list commands to minimize the traffic. In
this approach, it should be possible to update a running code
which can be done by building the code in the EEPROM and
using a small piece of code in RAM to load the image in
the Flash memory. The system should be resilient to packet
losses. The code update can be global, that is all the nodes
in the network are flashed, or the user can statically select
the nodes. The selection can be based on various criteria
like location, id or any other static property. Code update
approaches do not take into account the programmability of
the WASN as an aggregate, instead it just views the network
as a mere aggregation of nodes.

3.2 Database Model Approach

In this approach, the WASN is viewed as a distributed
database system. Multiple users inject database like queries
to be autonomously distributed in the network. The query’s
task is to retrieve the required information by finding the ap-
propriate nodes and possibly aggregate the data preferably
using custom collaboration among a set of nodes, as they are
routed back to the user. Heidemann et al [7] used a low level
naming scheme using directed diffusion [9] as the underly-
ing protocol. Cougar [15] developed at Cornell uses SQL,
with minimal additions to the language, to create a simi-
lar distributed database system. When a query arrives at a
node, the query resolver which is present in every node, de-
cides which nodes to pass the query for optimal performance.
TinyDB [12] developed in Berkley provides some optimiza-
tions like exploitation of shared medium and hypothesis test-
ing. Although this model helps us to program the network as
a whole, yet it is not expressive enough to implement any
distributed algorithm. Being declarative in nature, the user
cannot specify the algorithm to extract the data, as the com-
plications of embedded and distributed programming is ab-
stracted. So the data extraction is done in predefined ways
and hence only specific requirements specially the aggrega-
tion types, have optimal performance.

3.3 Mobile agent based approach

The agent based computing paradigm addresses a number of
issues faced in the field of WASN like -

(1)Scalability: Network performance is unaffected by the in-
crease in the number of nodes and if the agent architecture
can support adaptive load balancing, then much of the re-
design can be done automatically.

(2)Reliability: Mobile agents can be sent when network con-
nection is alive and they can return the required information
when the connection is re-established, so reliability of the
network does not affect performance very much.
(3)Extensibility and task adaptability: Mobile agents can be
used to carry out task specific integration process. Hence
with the same network, different tasks and hence different
applications can be achieved. So it extends the functionality
of the WASN.

(4)Energy awareness: The itinerary of the MA is deter-
mined by the information gain and energy constraints. If
the itinerary of the MA is not already known before hand,
then the genetic algorithm based solution to compute an ap-
proximation to the optimal source-visiting sequence as pro-
posed by Q.Wu [19] can be used.Mobile agent based Di-
rected diffusion [13] can also determine the path traversed by
a MA. Moreover, MA usually have a smaller footprint than
the sensed data. So in every way, mobile agent paradigm is
more energy aware than other paradigms.

(5)Progressive accuracy: A MA is always carrying a par-
tially integrated result generated as it migrates from one node
to another. Assuming the MA follows the gradient along the
increase of information gain, we can terminate the itinerary
whenever the integration accuracy surpasses a given thresh-
old, thereby saving network bandwidth and computation of
more Visits to other nodes.

Qi et al. [6] give a quantitative approach to the performance

TKK T-110.5190 Seminar on Internetworking 2009-04-27
evaluation of the mobile agent based system compared to the SinkiD | MA_SeqNum ’ MA_ReportingRate | LastRoundFlag
usual client-server paradigm with respect to execution time : :

as well as energy consumption. NextSrc | NextHop | FirstSrc ‘ LastSrc SreList

4 System architecture and design of
MAWSN

= Data Collectian is finished at the last source.
S
ol
,' ’ ‘/: @) O
’ [s (9] '®)
20 | Wy 9] & O
r . -
Dt o =0 9 ®
1 ", ., o
RN -~ O
1' & L] : O ¥ ‘o O o
e Ly o ® Oﬂz{o p
e /O8O O T
"‘%—'—---MO ® @0 @
|l ’\. -H--lhh'“'j‘ O O O
i
“ .O '; O o O
= O r O O O
\-.__J'
O Intermediate Node STy
@ Source Node 1 Target Region
' Sink Mode sy
3 1 Task Region
:é‘ Mobile Agent o
1

Figure 1: Architecture of MAWSN

Fig. 1 [14] shows the basic architecture of a MAWSN as
presented by Chen et al. [14], where a sink queries multiple
targets simultaneously by means of the Mobile Agent. The
MA moves from node to node as shown in the figure aggre-
gating and integrating data. The output of a task maybe a
simple aggregation done by collaborative process or a com-
plex return of a large volume of sensed data like a picture
from an image sensor. For efficiency reasons, multiple con-
current task requests can be clubbed in one packet and the
results for these tasks can be concatenated in a single packet
to save communication overhead, if the minimum quality of
service, like latency bound is not violated. Usually target re-
gion is far away from the sink, so the energy savings can be
significant. The multiple tasks should be initiated simultane-
ously using a single packet only if (1) all the tasks which are
combined can be processed by the common code part of the
MA packet, to avoid communication overhead for additional
processing code, (2) with respect to the distance between the
center of the combined task region and the sink, the task area
are likely to be close to each other. (3) all the tasks are re-
quested concurrently by the application.

We can assume that the sink is aware of the set of nodes
which the MA is going to visit and the itinerary is already
setup. The routing mechanism can be thought of as a one
phase-pull Directed Diffusion [9]. A more MA specific di-
rected diffusion is presented by Chen et al. in [13].

An example of a packet structure for a MA is shown in Fig.
2. Sink_ID and MA_SeqNum identifies a packet uniquely.

Data

Processing Code

Figure 2: MA Packet

MA_SeqNum is incremented the sink dispatches a new MA
packet. The SourceList which specifies the set of nodes the
MA should visit, has the FirstSource and the LastSource
marking the starting and the end point of the MA’s itinerary.
NextSource specifies the next destination node to be visited
and the NextHop specifies the immediate next hop of a cur-
rent node. A round is defined as period between the col-
lection of the packet from the FirstSource to the collection
of the packet from the LastSource. LastRoundFlag indicates
that the current round is the last round in the data collection
process and is set by FirstSource.

The payload of a MA packet consists of two types of data,
the ProcessingCode, code used to process the sensed data
and the Data which is actually the aggregate data. At the start
of every round, FirstSource will create a new MA by copying
from a stored one with the frequency of MA_ReportingRate.
During the migration phase when the MA arrives at a sen-
sor node, the current node’s id is checked to see if it reached
on the destination source. If not, it continues to migrate to
the correct node, else the MA collects the locally processed
data, deletes the current target source from the SourceList
and chooses the NextSource as the next destination. Fig. 3 il-
lustrates the pseudo code describing the migration algorithm
followed by a MA in a round.

/* Check whether an MA arrives
at a specific source or not */
If (ThisNode=FirstSource)
MA migrates toward FirstSource;
elseif (ThisNode=NextSource)
&&(NextSource!=LastSource)
MA collects sensed data:
Ainong the sources in SourceList,
select the one with maximum
gradient as NextSource;
Set NextSource in the MA packet:
MA migrates towards NextSouice.
elseif (ThisNode=LastSource)
MA collects sensed data:
MA migrates back to sink:
elseif (NextSource=FirstSource)
M4 migrates between source nodes.
endif

Figure 3: Mobile Agent Migration Algorithm

TKK T-110.5190 Seminar on Internetworking

2009-04-27

5 Challenges

Challenges usually encountered while programming with
mobile agents as discussed in [2]. Contrary to the belief that
mobile agents optimize resource access and network over-
head, quantitative analysis have shown that mobile agents are
not as effective in practice as they are supposed to be. Mobile
agent based systems are difficult to design, while most dis-
tributed applications can be addressed by well known tech-
niques. Implementation, testing and debugging of mobile
agent based systems is a very daunting task. Mobile agents
are difficult to authenticate and control and are very simi-
lar to worms in their functioning. Mobile agents also lack a
shared language/ontology to interact with the environment.
So some researchers like Giovanni Vigna [2] feel that other
forms of code mobility or simpler solutions should be tried
to avoid the issues that have to be addressed while dealing
with mobile agents.

6 Conclusion

The mobile agent based WSN promises a lot of efficiency
when compared to the more traditional client server ap-
proach. Also Chen et al. [14], for a given set of param-
eters, have derived the conditions where MA based WSN
exhibits better performance than the client server approach
in terms of packet delivery ratio, energy consumption and
end-to-end delay. Given the autonomous nature of the vi-
ral like migration of MAs, significant improvements in se-
curity measures need to be taken. Mobile agent based sys-
tem help to program the network as a whole and truly fol-
low the “one-deployment, multiple applications” principle
by injecting task specific code and not just tune in param-
eters. Boulis [3] has clearly shown the advantage of the mo-
bile based paradigm compared to the other approaches like
code update or the distributed database model using a tar-
get tracking system. Qi et al. [17] has shown the usage of
mobile agent to carry out distributed sensor integration tasks
by taking an example of target classification to illustrate the
efficiency of the MA computing model.

References

[1] T. Liu and M. Martonosi. Impala: A Middleware
System for Managing Autonomic, Parallel Sensor Sys-
tems. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles and Practices of Parallel Program-
ming, 2003.

Vigna, G. Mobile agents: ten reasons for failure. In
Mobile Data Management, 2004. Proceedings. 2004
IEEFE International Conference on, volume 16, pages
298- 299, June 2004.

Athanassios Boulis . Programming Sensor Networks
with Mobile Agents. In ACM International Conference
On Mobile Data Management, volume x, pages 252—
256, May 2005.

(4]

(5]

[6

—_

(7]

(8]

[9

—

(10]

(11]

[12]

(13]

[14]

Athanassios Boulis, Chih-Chieh Han, and Mani B.
Srivastava. Design and Implementation of a Frame-
work for Efficient and Programmable Sensor Net-
work. www.ee.ucla.edu/~simonhan/simon__
paper/SensorWare—-Mobisys03.pdf.

Chien-Liang Fok, Gruia-Catalin Roman and Chenyang

Lu. Mobile agent middleware for sensor net-
works: An application case study. Technical re-
port, 2005. http://cse.seas.wustl.edu/

techreportfiles/getreport.asp?399.

Hairong Qi, Yingyue Xu and Xiaoling Wang. Mobile-
agent-based Collaborative Signal and Information Pro-
cessing in Sensor Network. In Proceedings of the
IEEE, volume 91, pages 1172 — 1183, Aug 2003.

J. Heidemann, R. Govindan, and F. Silva. Building effi-
cient wireless sensor networks with low-level naming, T
sosp. In In SOSP, 2001.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System architecture directions for net-
worked sensors. In In Architectural Support for Pro-
gramming Languages and Operating Systems, pages
93-104, 2000.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: a scalable and robust communica-
tion paradigm for sensor networks. In ACM Interna-
tional Conference on Mobile Computing and Network-
ing (MOBICOM 00, pages 56—67, 2000.

John Herbert; John Oapos;Donoghue; Gao Ling; Kai
Fei; Chien-Liang Fok. Mobile Agent Architecture
Integration for a Wireless Sensor Medical Applica-
tion. In Web Intelligence and Intelligent Agent Technol-
ogy Workshops, 2006. WI-IAT 2006 Workshops. 2006
IEEE/WIC/ACM International Conference on, pages
235 — 238, Dec 2006.

J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso.
Pushpin computing system overview: a platform for
distributed, embedded, ubiquitous sensor networks. In
in F. Mattern and M. Naghshineh (eds): Pervasive
2002, Proceedings of the Pervasive Computing Con-
ference, pages 139—151. Springer Verlag, 2002.

S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler.
Supporting aggregate queries over ad-hoc wireless sen-
sor networks. In In Workshop on Mobile Computing
and Systems Applications, pages 49-58, 2002.

Min Chen, Taekyoung Kwon, Yabghee Choi and Victor
C.M. Leung . Mobile Agent-Based Directed Diffusion
in Wireless Sensor Networks. In The IEEE Conference
on Local Computer Networks, volume 17, page 529,
Nov 2005.

Min Chen, Taekyoung Kwon, Yong Yuan and Victor
C.M. Leung. Mobile Agent Based Wireless Sensor
Networks. In Journal of computers, volume 1, April
2006.

TKK T-110.5190 Seminar on Internetworking

2009-04-27

[15]

[16]

[17]

(18]

[19]

J. G. P. Bonnet and P. Seshadri. Querying the physi-
cal world. IEEE Personal Communications, 7:10-15,
2000.

D. C. Philip Levis. Maté: a tiny virtual machine for
sensor networks. In ACM Proceedings of the 10th inter-
national conference on Architectural support for pro-
gramming languages and operating systems, pages 85
-95,2002.

H. Qi and X. Wang. Multisensor data fusion in dis-
tributed sensor networks using mobile agents. In In
Proceedings of 5th International Conference on Infor-
mation Fusion, pages 11-16, 2001.

N. Reijers and K. Langendoen. Efficient code distribu-
tion in wireless sensor networks. In WSNA '03: Pro-
ceedings of the 2nd ACM international conference on
Wireless sensor networks and applications, pages 60—
67, 2003.

Wu, Q.; Rao, N.S.V.; Barhen, J.; Iyenger, S.S.; Vaish-
navi, V.K.; Qi, H.; Chakrabarty, K. On computing mo-
bile agent routes for data fusion in distributed sensor
networks. In Knowledge and Data Engineering, IEEE
Transactions on, pages 740 — 753, 2004.

