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Abstract

The communication environments of the Internet today are
more complex than the traditional distributed systems. These
environments are the inter-connecting between various types
of network schemes, each of which has its own features and
complexity. Among these network schemes, the Peer-to-Peer
(P2P) network overlays not only gain much interest from
researchers but from large amount of users as well. From
the researchers’ view, they provide a foundation for creating
large-scale data sharing, content distribution and application-
level multicast applications. And for the users, they pro-
vide environments for sharing content files (containing au-
dio, video, data or anything in digital format) and real-time
data (such as telephony traffic). In this paper, we will study
five P2P network schemes (CAN, Chord, Tapestry, Freenet,
Gnutella) by looking at their outstanding features and use
cases. Furthermore, we will attempt to use the taxonomy to
make comparisons between these schemes. This compari-
son helps to select proper P2P network schemes for specific
applications.

KEYWORDS: P2P Searching, DHT, CAN, Chord, Tapestry,
Freenet, Gnutella, Structured, Unstructured.

1 Introduction

Just like in many similar cases, the beauty of Peer-to-Peer re-
lies on a pretty sophisticated technology running behind the
scenes. It is becoming popular since the emergence of file
sharing systems such as Bittorrent[2] and Napster[4]. Today,
many operators realize more benefits of P2P and they moti-
vate the development of products based on their needs. File
sharing, content distribution, Internet telephony and video
conferencing are taking advantages of P2P network archi-
tectures.

P2P networks can be classified into Structured and Un-
structured overlays. Unstructured overlay networks are a
key component in many P2P systems. The networks use
flooding as the mechanism to send queries. Although flood-
ing technique is poorly suitable for locating rare data, it is ef-
fective for locating replicated data and resilient to node fail-
ure or message losses. In Structured P2P overlay network,
the topology is tightly controlled and content are placed at
specific location that will make the queries more efficient.
Such Structured P2P systems use the Distributed Hash Ta-
ble (DHT) to achieve the goal. DHT-based system can locate
data in a small O(logN) overlay hops on average, where N is
the number of peers in the system [28]. DHT-based systems

are an important class of P2P routing infrastructures. They
support rapid development of many applications and enable
scalable, wide-area retrieval of shared information.

When operators start a P2P service, they hesitate to choose
among various network schemes. Each P2P network scheme
has its own advantages and disadvantages. In this paper’s
scope, we will compare the features of five schemes: CAN,
Chord, Tapestry, Freenet, Gnutella. Based on this compar-
ison, the operators can realize which P2P network schemes
are suitable for their services. The criteria for comparison
are:

• Decentralization - evaluate the distribution of the over-
lay system.

• Operation Architecture - the architecture for the overlay
system’s operation.

• Retrieve Protocol - the protocol used for lookup pro-
cess.

• System Parameters - the parameters for the overlay sys-
tem operation.

• Routing Performance - the lookup routing protocol per-
formance.

• Routing State - the routing state of overlay system.

• Join/Leave Behavior - the behaviors of peers when they
join or leave the overlay system.

• Security - describe the vulnerabilities of overlay system.

• Reliability - examine how robust the overlay system
when failures occur.

In Section 2 and 3 of the paper, we will describe key
features of Structured and Unstructured P2P overlay net-
works and their basic operation functionalities. We will
introduce 3 overlay schemes of Structured P2P networks
(Content Addressable Network - CAN, Chord and Tapestry)
and 2 overlay schemes of Unstructured networks (Freenet
and Gnutella). After providing basic understanding of these
overlay schemes, we will also evaluate and compare the fea-
tures and performance of each scheme. In Section 4 , we
discuss a proposed hybrid searching techniques in the P2P
overlay networks. Finally, in Section 5, we conclude the pa-
per with thoughts on some directions for the future in P2P
overlay networking.
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2 Structured P2P Overlay Networks

In the structured overlay network, the keys are assigned to
data items and each peers are mapped into a graph that maps
each data key to a peer. This structured graph allows an effi-
cient data discovery using the given keys. However, this type
of network does not support complex queries and it needs to
store a pointer to each data object at the peer that is respon-
sible for the key. In this section, we study and compare three
Structured P2P overlay networks: Content Addressable Net-
work (CAN) [25], Chord [18], Tapestry [14] [15].

2.1 Content Addressable Network (CAN)

In some P2P networks, a central server is used to store the
index of all the files available within the peer community. If
a peer requests a file, the server processes the query to ob-
tain the IP addresses of peers storing the requested file. This
peer-to-peer communication model is still much centralized.
Further efforts are made to improve this situation by using
flooding technique. But it is still unscalable as the size of the
community grows. A new scalable indexing mechanism is
introduced, it is Content Addressable Network (CAN) [25].

CAN is a distributed infrastructure that provides hash
table-like functionality on Internet-like scale. The charac-
teristics of CAN are scalable, fault-tolerant and completely
self-organizing. As previously mentioned, CAN resembles a
hash table. The basic operations in CAN are insertion, look-
up and deletion the (key, value) pairs. Each peer stores a
chunk (or a zone) of the entire hash table which holds infor-
mation of a numbers of adjacent zones in the table. Requests
for keys are routed by the intermediate peers to zones that
contain the key. Using this technique, CAN uses no form of
centralized control or configuration. CAN nodes only have
to maintain a small amount of states that are independent
of the numbers of nodes in the system, which make CAN
scalable. When failures occur, a request can be routed to
different path formed by alive intermediate peers.

The CAN design is a virtual d-dimensional Cartesian co-
ordinate space. This space is partitioned among all peers
in the systems such that each peer holds its individual zone
within the space. Figure 1, which is deduced from [25], illus-
trates a example of 2-dimensional space. If we want to store
a (K, V) pair, we use a uniform hash function to map key
K onto a point P in the coordinate space. And suppose that
peer E has zone containing the location of point P, the (key,
value) pair is then stored at peer E. And peer E only needs to
maintain the status of its 4 neighbors (A, B, C, D). At peer X,
in order to retrieve an entry of corresponding key K, it uses
the same hash function to map K onto point P. And because
point P is not in peer X’s zone and its neighbors, the request
will be routed through the entire CAN structure until reach-
ing the peer whose zone contain P. And the final destination
is peer E.

CAN has an associated DNS domain name resolving to
the IP address of one or more bootstrap nodes (A bootstrap
node maintains spatial list of CAN peers). In order to join a
CAN, peer Z looks up in the DNS to find a bootstrap peer’s
IP address. The bootstrap peer then randomly provides the IP
addresses of chosen nodes currently in the system. After that,

Figure 1: Example of 2d space CAN a) before and b) after
Peer Z joins.

peer Z chooses a point P and send JOIN requests destined
for point P. The destined zone (peer X) is splitted in half and
the half is assigned to peer Z. The (key, value) pairs from
the half zone to be handed over are also transfered to peer
Z. After having its zone, peer Z learns the IP addresses of
its neighbors from the previous occupant X. This set is the
subset of peer X’s neighbors, plus peer X itself.

CAN is a suitable candidate in large scale storage manage-
ment systems which requires efficient insert and retrieval of
content with a scalable indexing mechanism. Another poten-
tial application for CAN is in the construction of wide-area
name resolution services which decouple the naming scheme
from the name resolution process thereby enabling arbitrary,
location-independent naming schemes.

2.2 Chord

The core operation of P2P protocol is the efficiency of
lookup mechanisms. Each P2P protocol has its own lookup
mechanism that affects its performance. Chord [18] proto-
col is one of the original DHT protocol which use consistent
hashing to assign keys to it peers in a circle. In a Chord
system, each peer receives the same number of keys and in-
volves little movement of keys when nodes join and leave
the system. Three features that distinguish Chord from other
peer-to-peer retrieve protocol are simplicity, provable cor-
rectness and provable performance. A Chord node only need
to maintain the information about O(logN) other nodes for
efficient routing. But performance degrades when that infor-
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mation is out of date. In practice, nodes will join and leave
arbitrarily, thus consistency of O(log N) state may be hard to
maintain.

In Chord, an identifier ring is used to stored nodes and
keys. This ring is actually a circle of numbers from 0 to
2m−1. On the ring, a node’s identifier is calculated by hash-
ing the node’s IP address and a key identifier is produced by
hashing the key. m is chosen to be large enough to make the
probability of keys hashing to the same identifier negligible.
Figure 2, which is deduced from [18], show an example of
chord ring with m= 6. This ring has 10 nodes and stores 5
keys. Chord assigns keys to nodes as follows. Key k is as-
signed to the first node whose identifier is equal or follow
k in the identifier circle. This is call the successor node of
key k, denoted by successor(k). The successor of key k is the
first node clockwise from k. For example, the successor of
identifier 10 is node 14, so key 10 is located at node 14. Sim-
ilarly, keys 24 and 30 are located at node 32, key 38 at node
38, and key 54 at node 56. The consistent hashing provides
minimum disruption when nodes enter or leave the network.
When a node n joins the network, certain keys previously
assigned to n’s successor are assigned to n. When node n
leaves, all of its keys are assigned to n’s successor. The join-
ing and leaving process requires only O(log2 N) messages.
No other changes of key assignments to nodes need to occur.

The query for a given identifier is passed around the circle
through the successors’ pointers. An example is shown in
figure 2. Node 8 performs lookup for key 54. It performs
the find_successor operation for this key. The query passes
every nodes on the circle between node 8 and node 56. This
eventually returns the successor of that key, node 56. How-
ever, this technique requires the amount of messages linear
in the number of nodes. To accelerate the retrieve process,
Chord using additional routing information. Each node n
maintains the table with m entries. This table is called finger
table. The ith entry in the finger table contains the iden-
tity of the first node s that succeeds n by at least 2n−1 on
the identifier circle, i.e. s = successor(n + 2i−1), where
1 ≤ i ≤ m (all mathematic is modulo 2m). An entry in fin-
ger table contain Chord identifier and the IP address of the
relevant node. Figure 2 show the finger table of node 8. The
first entry is node 14, as node 14 is the first node that suc-
ceeds (8+20) mod 26 = 9. Similarly, the last entry is 42, as
node 42 is the first node that succeeds (8+25) mod 26 = 40.

The successor pointers of peers change when a peer joins
or leaves the systems. It is very important to keep the point-
ers updated as it will affect the correctness of retrieving keys.
However, Chord has implemented a stabilization algorithm
[18] that run periodically to update the pointers and entries in
the finger table. When a node leaves, another nodes possibly
don’t know their successors and predecessors. To avoid this
situation, a node maintain a list of r successors. When the
successors node does not responds, the node contact the next
node on the successor list. Suppose that the probability of
failure on every node is p then the probability that all nodes
in the list fails is pr. By increasing the number of node r in
the list, the system will be more robust.

Chord can be used in Cooperative File System (CFS) [9].
In this system, various providers of content cooperate to
store and serve each others’ data. The benefit of spreading

Figure 2: Chord ring with identifier circle consisting of 10
peers and five data keys. Finger table entries for peer 8.

total load evenly over all participants is the low cost of the
system, because each participant only needs to provide ca-
pacity for the average load , not for the peak load. Another
application is Chord-based DNS [10]. It provides a lookup
service with hostname as keys and IP addresses as values.
Chord provides DNS service by hashing each host name to a
key. It requires no special server, compared to original DNS
systems. Furthermore, it also automatically maintains the
correctness of the analogous routing information.

2.3 Tapestry
The inspiration for Tapestry’ s design is the location and
routing mechanisms introduced by Plaxton, Rajamaran and
Richa in [8]. Plaxton et al. present a distributed data struc-
tured, known as Plaxton mesh, optimized for locating name
object and forwarding messages to those objects. It allows
messages to locate objects and to be routed to them across an
arbitrarily-sized network using a small constant-sized rout-
ing map at each node. In Plaxton mesh, nodes can take the
roles of servers, which store data objects, and clients, which
issue requests. It uses local routing map at each node, also
known as neighbor maps, to route the message to the destina-
tion. This is done incrementally digit by digit of the destina-
tion ID (for example, ∗ ∗ ∗0 =⇒ ∗∗ 10 =⇒ ∗410 =⇒ 2410,
where ’*’ is the wildcard).
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Figure 3: An example of routing in Plaxton mesh. Here we
see the path taken by a message originating from node 0325
destined for node 4598 in a Plaxton mesh using hexadecimal
digits of length 4.

An example is shown in figure 3 [14]. In our discussion,
we resolve the digit from right to left, but the decision is ar-
bitrary. A node n has a neighbor map with multiple levels.
Each level represents a matching suffix up to a digit position
in the node ID. A given level of the neighbor map contains
a number of entries equal to the base of the ID, where the
ith entry in the jth level is the ID and location of the clos-
est node which ends in "i" + suffix(n, j -1). For example,
the 7th entry of 4th level for node 94A7C is the node closest
to 94A7C which ends in 7A7C. The nth node that the mes-
sage reaches share a same suffix at least the length n of the
destination ID. In order to find the next node, we look at its
(n +1)th level map, and find the entry matching the value
of the next digit of the destination ID. This routing method
ensures that any node in the system will be found within at
most logB N hops, where N is number of nodes and B is the
base of node ID. As every single neighbor map at a node as-
sumes that the preceding digits all match the current nodeŠs
suffix, only a small constant size B entries at each route level
need to be kept. Thus a neighbor map of fixed constant size
is: (entries/map)× number_of_maps = B · (logB N)

The goal of Tapestry is the ability to detect and recover
from failures. The most common faults impacting routing
are server outages (due to high load and hardware/software
failure), link failure and neighbor map corruption. Tapestry
can detect failures quickly, operate under them and recover
routing state when the failures are repaired. To detect server
and link failures, Tapestry utilizes TCP timeouts. Besides,
the nodes send to their neighbors the UDP periodic heartbeat
packets. This is simply a message that assures the reacha-
bility of the message source. By checking the ID of each
arrived message, faulty and corrupted neighbor tables can be
quickly detected. In order to operate under failures, every
entry in the neighbor map maintains two backup neighbors
beside the primary neighbor. When the primary neighbor
fails, it will switch to the backup neighbors in order. Fur-

thermore, Tapestry wants to avoid the costly reinsertions of
a node when failures have been repaired. When a node de-
tects that a neighbor is unreachable, it marks the neighbor as
unreachable in stead of removing it pointer. It maintains a
reasonable second chance period, during which the message
is still routed to the failed node. If the failure can not be re-
paired in this period, the failed neighbor is removed from the
map.

Tapestry provides an overlay routing network that is sta-
ble under a various network conditions. Thus it provides an
ideal infrastructure for distributed applications and services.
One application of Tapestry is the OceanStore system [19]
[5], which is a global-scale, highly available storage util-
ity deployed on the PlanetLab. Another applications include
Bayeux [24], which is an efficient self organizing multicast-
ing application, and SpamWatch [6] - a decentralized spam-
filtering system using the similar search engine implemented
on Tapestry.

2.4 Analysis and Comparision

In CAN network, peers are organized into a d-dimensional
Cartesian coordinate space. Each peers have the ownership
of a specific area on the space. A CAN node learns and main-
tains the routing table which holds the IP address and virtual
address of neighbors. Suppose that we have a d-dimensional
spaced divided into n zones, the average routing path length
is (d/4)(n

1
d ) hops and each node maintains 2d neighbors.

From this formula, we can understand that the number of
nodes and zones can be increased without affects to the node
states, and the path length grows as O(n

1
d ). In order to join a

CAN network, a peer need to connect to any existing peers.
And then the region of that peer will be splitted into halves,
the new peer take one half as its region. When a peer leave
the network, it hand over its data such as NodeID, list of
neighbors to a takeover peer. The routing performance in
CAN network can be improved through various factors. First
of all, it depends on the dimension of the space. Secondly,
a peer can choose the neighbor closest to the destination in
CAN space. Or the landmark-based placement can let peers
to probe a set of well known landmark hosts, which estimate
each of their network distances. There are still questions on
CAN’s resiliency, load balancing, locality and latency costs.

In Chord system, keys and peers are map onto an iden-
tifier ring. On the ring, a node’s identifier is calculated by
hashing the node’s IP address and a key identifier is pro-
duced by hashing the key. m is chosen to be large enough
to make the probability of keys hashing to the same identi-
fier negligible. This Consistent Hashing help to minimize
the disruption when a peer joins or leaves the network. It
ensures that the number of caches for an object is limited
and when these caches change, the minimum number of ob-
ject references will move to maintain load balancing. Be-
side that, each Chord peer only needs to maintain infor-
mation about O(logN) other nodes for efficient routing. In
fact, Chord is similar to binary search, where the search-
ing space is reduced half after a search/routing-hop. So in
a N-node network, the number of nodes to contact to resolve
a query is O(logN). As a extent of Chord, if we use K-ary
tree search [26], the search hop will decrease to O(logkN),
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while the items of routing table in each node will increase to
O((k − 1) ∗ logkN). One significant process that also ef-
fects the operation of Chord is the background maintenance
process. This stabilization algorithm runs periodically to up-
date the pointers to successors and the entries in finger table.
But how often the stabilization procedure needs to run to de-
termine the success of ChordŠs lookups. Liben-Nowell et
al. [1] already performed an analysis research to determine
the optimum involves the measurements of peersŠ behavior
based on this feature.

The location and routing mechanism of Tapestry are sim-
ilar to those of Plaxton. Every node contains a neighbor
map. It contains many routing levels, each of which con-
tains entries pointing to closest nodes that matches the suffix
for that level. Each node also maintains a backpointer list
pointing to nodes where it refers as neighbors. We use them
in the node integration algorithm to generate the appropriate
neighbor maps for a node. Because the routing uses local
data, Tapestry is inherently decentralized, by which we can
avoid the bottleneck in the network. In addition, routing re-
quires nodes match a certain suffix, it it possible to route
around any failure by choosing another node with a simi-
lar suffix. However, Tapestry requires global knowledge at
the time when the mesh is constructed. This complicates the
process of adding and removing nodes from the network.

These DHT-based systems are susceptible from the mali-
cious peers’ attacks. These attacks originate from the peers
that do not follow the protocol correctly, as describe in [16].
The malicious peers can eavesdrop the communications be-
tween peers. The IP address is the weak point of peer iden-
tity as the malicious peers can trick others to believe and
send data objects to there IP addresses. The possible at-
tacks involve routing deficiencies due to corrupted lookup
routing and updates.; inconsistent behaviours of peers; de-
nial service attack by overloading the victims’ connections,
and unsolicited responses to lookup queries. In [22], Castro
et al. present a design and analysis of techniques for secure
routing (also known as Eclipse attack), secure peer joining,
routing table maintenance, and robust message forwarding
in Structured P2P overlay networks. These techniques can
tolerate up to 25% of malicious peers with a small com-
promised peer. But they can only work for Structured P2P
overlay network. Thus, new technique is proposed in [11] to
prevent Eclipse Attacks in both Structured and Unstructured
network. When the attacker launches an Eclipse attack, the
indegree of attacker nodes should be higher than the average
indegree of correct nodes . Thus the correct nodes choose
neighbors from nodes whose indegree and outdegree are be-
low a threshold. An efficient auditing technique is also used
to prevent attacker nodes from lying about their indegree and
outdegree.

Figure 4 summarizes the features of Structured P2P over-
lay networks that have been discussed in section 2.

3 Unstructured P2P Overlay Net-
works

In the unstructured P2P networks, there are no strict rules
defining where data is stored or which nodes are neighbors

Figure 4: A comparison of CAN, Chord and Tapestry net-
work schemes.

of other nodes. They organize peers in a random graph in
flat or hierarchical manners. To look up for specific data,
peers use flooding, random walks or expanding ring Time-
To-live (TTL). In this section, we will survey and compare
two Unstructured P2P overlay networks: Freenet [17] and
Gnutella [3] [27].

3.1 Freenet
Freenet is an adaptive peer-to-peer network of nodes that
query one another to store and retrieve data, which are named
by location-independent keys. Nodes in Freenet system
maintain the local data files, which are available to read and
write for the whole network, and a dynamic routing table
that contains the IP addresses of other nodes as well as the
key that they hold. The architecture of Freenet is totally de-
centralised and distributed, which means that there are no
central servers and all computations and interactions happen
between clients. Clients connect randomly to other available
clients. This makes Freenet network an unorganised scat-
tered topology. Requesting for keys are passed along nodes,
in which nodes decide the next location to send. The re-
quest routing uses the style of IP routing. Each request has
a hops-to-live limit, similar to the IP’s time-to-live,which is
decremented at each node to prevent infinite loops. Each
request also has an identifier, thus nodes can prevent loops
by rejecting requests they have seen before. When this situa-
tion occurs, a different node is chosen to forward the request.
This process continues until the data is found or the request
exceeds its hops-to-live limit. Then result is passed back to
the sending node by the sending path.

Figure 5 shows an example of request sequence in Freenet.
The user at node a initiates a request. Node a forwards the
request to node b, which forwards it to node c. Node c is un-
able to contact any other nodes and returns a "request failed"
message to b. Node b now forward request to node e, which
forwards the request to f. Node f forwards the request to b,
which detects the loop and returns a failure message. Node f
is unable to contact any other nodes and backtracks one step
further back to e. Node e forwards the request to its second
choice, d, which has the data. The data is returned from d via
e and b back to a, which sends it back to the user. The data
is also cached on e, b, and a.
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Figure 5: An example of a request sequence in Freenet.

The data files in Freenet are identified by binary file keys.
We obtain the keys by using 160-bit SHA-1 [7] as our hash.
Three different types of binary keys are used for various pur-
poses. The simplest one is Keyword-Signed Key (KSK). This
key is derived from the descriptive string the user choose
to when store the files in the network. The string is fed
to a function to get a public/private key pair. The public
one is then hashed to yield the file key. The private one is
used to sign the the file, which provide minimal check that
a retrieved file matches its file key. But nothing prevents
users to choose same descriptive text strings for different
files. However, a second technique, called Signed-Subspace
Key (SSK), solves this problem. A user creates a names-
pace by randomly generating a public/private key pair. The
pair is used to identify his namespace. In order to insert a
file, user chooses a short descriptive string. The namespace
key and the descriptive string are hashed independently, then
XOR’ed together, and finally hashed again to get the file key.
This signature is generated from a random key pair which is
more secure than in the Keyword-Signed Key. The file is also
encrypted by the descriptive string. The third type of binary
key is Content-Hash Key (CHK). This one is useful for im-
plementing updating and splitting the contents. A hashing
function is applied to the content of file to get the key, giv-
ing every file unique key. To allow others to retrieve the file,
the user publishes the content-hash key together with the de-
cryption key.

The Freenet provides an effective means of anonymous in-
formation storage and retrieval. It keeps information anony-
mous and available while remaining highly scalable by us-
ing many nodes with adaptive routing algorithm. Because of
the anonymous feature, it is hard to show exactly how many
users there are or how well the insert and request mecha-
nisms are working. Thus Freenet also has the potential to
create an anonymous network in which copyright and illegal
information can be traded with no fear of reprisal.

3.2 Gnutella

Gnutella [27] is s decentralized peer-to-peer system consist-
ing of hosts connected to each other over TCP/IP. In the
Gnutella network, the traffic consists of: queries for data,

Figure 6: A typical query and respond in Gnutella.

replies to queries and discovering messages to find nodes.
This type of network allows to share arbitrary resources (e.g.
resources are mapping to other resources, meta-information
and other types of pointers). If a node wishes to join the
Gnutella network, it must connect to any existing nodes of
the system. The mechanism "host caches" allow a new nodes
join the network by connecting to a random nodes’ IP ad-
dress provided via DNS or on a specific website. The new
node opens a TCP connection to the existing node and per-
form a handshake. If the connecting node refuses the con-
nection, it will recommend other IP addresses for the new
node to connect to. A node needs to connect to multiple
existing nodes in order to reach the whole Gnutella nodes.
When it manage to join the network, it communicates with
neighbor nodes by sending and receiving Gnutella protocol
messages and accepting connections from new nodes. The
main protocol messages are:

• Ping: a request for information about another nodes.

• Pong: a reply carrying information about a node.

• Push: a mechanism that allows a firewalled node to
share data.

• Query: a request for a resource.

• Query Hit: a response identifying an available resource.

Gnutella is a broadcast network, in which Pings and
Queries are forwarded to multiple nodes. To reduce the re-
source consumption, nodes cache Pongs to response to Pings
when they can. Pongs and Query Hits are routed back to
the path needed to reach the destination. In this respect,
the queries are inefficient due to flooding, but the replies is
rather efficient. Figure 6 shows a typical query and respond
in Gnutella network.

A node that wants to perform a search sends a Query mes-
sage to al nodes connected directly to it. Each of them will
then replicates and relays the Query message to its neigh-
bors, except the node that originates the query. This process
continues within some certain regions. And because of the
flooding characteristic, there is a possibility that the network
is in the bottleneck state. Thus the maximum size of Query
message is limited to 256 bytes. A Time-to-Live (TTL) value
is also assigned to the message to avoid the endless forward-
ing loop. A node replies with a Query Hit message when
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it has content that satisfies the request. This Query Hit con-
tains the IP address and port number where this specific node
can be reached for the data transfer. When a node receives
a Query Hit message, it knows where to get the data. In
Gnutella, the data are downloaded out-of-network: instead
of wasting the Gnutella network capacity, the two nodes in-
volved in the transfer connect over TCP/IP and transfer the
data directly. The file download protocol is HTTP/1.0 or
HTTP/1.1. These are the standard protocols for download-
ing files from web servers. The node wanting to download
a file makes a TCP/IP connection to the serving host at the
IP address and port number specified, then makes a standard
HTTP request.

Super-peer or ultrapeer [27] is a prominent feature of
Gnutella system. With this idea, the peers are categorized
into "regular peers" (leafs) and "ultra-peer". An ultra-peer
is a host with sufficient network bandwidth and can act as a
proxy for a large number of connecting clients. The ultra-
peer removes the burden of message routing from the client.
It is used as an entry point into the network for the leaf nodes.
The ultra-peer concept lets the Gnutella network scale quite
well as it reduces the number of nodes actually involved in
message routing. With this scheme, the Gnutella network
mimics the Internet: low bandwidth nodes are connected to
larger routers (the ultra-peers) that transmit the majority of
the data over high bandwidth backbones.

3.3 Analysis and Comparision

The Unstructured P2P network is characterized by the flood-
ing technique, which is quite efficient in finding popular data
objects. However, it can not find rare item due to the limit
of lookup TTL parameter and can results in excessive band-
width consumption. Although DHT-based system have the
ability to find are data and have efficient searching mecha-
nisms, they are not widely deployed as their ability to handle
unreliable peers has not been tested. Thus, there are till many
efforts to improve the lookup properties of Unstructured P2P
overlay system.

Gnutella and Freenet use simple protocols that let peers
query one another in a chain. They make location irrelevant.
The data in Gnutella and Freenet belongs to the whole sys-
tem rather than to a particular node. Freenet aims at protect-
ing anonymity, in which the distributing information cannot
be traced and its location is irrelevant. The Freenet also in-
troduces the indexing scheme where data objects are iden-
tified by Content-Hashed Keys or secured Signed-Subspace
Keys to ensure that only object owners have writing access
and other can only read it. While most people consider
Gnutella and Freenet as the same, Gnutella is not designed
for anonymity. When querying for data objects, Gnutella
peers are likely to return a location (usually IP address and
connecting port) or some other identifying information. Two
Gnutella developers, Spencer Kimball and Gene Kan, ex-
plained that Gnutella is going beyond a normal file sharing
by allowing the distributed processing of search queries, and
thus better distributing information about whatŠs available
online. In the Gnutella protocol version 6, the ultra-peers
concept is introduced. These are high capacity peers that act
as the proxies for other low capacity peers. The improve-

Figure 7: A comparison of Freenet and Gnutella network
schemes.

ment is made based on the Query Routing Protocol (QRP),
by which the leaf nodes can forward the query to the ultra-
peers and reduce the lookup query traffic at the leaf nodes.
As described in [29], peers are attached to high-degree peers
that provide a receiver-based token flow control for sending
lookup queries to neighbors. Instead of flooding, they use
random walk search algorithm and the system also keep the
pointers to objects in neighboring peers. Unstructured P2P
overlay are proposed to be built on top of Structured P2P
overlay to reduce the lookup queries overhead and overlay
maintenance traffic.

Most of these Unstructured P2P network are not pure
power-law networks. For example, an analysis research in
[21] shows that Gnutella networks have topologies that are
power-law random graphs, and there are too few peers with a
low number of connectivity. This might reflect the behaviors
of the users of P2P networks. Many research on power-law
networks shows that in diverse networks, most peers have
few links while a few peers have a large number of links.
Adamic et al. [20] study the random-walk search strategies
in these power-law networks, and discover that by chang-
ing walkers to seek out high degree peers, the search per-
formance can be optimized greatly. All the security issues
discussed in the Structured P2P overlay section is applicable
to Unstructured P2P overlay networks.

Figure 7 summarizes the features of Structured P2P over-
lay networks that have been discussed in section 3.

4 Hybrid Search in Peer-to-Peer Net-
works

Unstructured P2P network adopts flooding techniques to lo-
cate files. These techniques are effective for locate highly
replicated data, but not for rare data. In contrast, Structured
P2P networks are very good at locating rare item, but they get
higher overloads for popular files. A hybrid searching [13]
[12] [23] technique is proposed. By using this, structured
search techniques are used to index and locate rare items, and
flooding techniques are used for locating replicating items.

In Loo’s experiment [13], he showed that queries for
rare data in Gnutella have low recall rate. About 18% of



TKK T-110.5190 Seminar on Internetworking 2009-04-27

Gnuetella queries return no results despite there are results
available in the system at two third of these queries. Such
queries also have poor response time. On the contrary, DHT
have good recall and response time for rare data while in-
cur bandwidth cost for poppular item publishing. A hybrid
P2P search combines unstructured flooding technique with
structured DHT-based global index [13] [12]. Based on the
popularity of items, queries are perfomed either by flood-
ing the unstructured network, or by looking up in the DHTs.
This will improve the recall and response time of queries for
rare items with low bandwidth overhead, and furthermore
maintain good recall and response time for highly replicated
items.

The main issue in hybrid search is how to estimate the
number of peers that can reply a query, such that we can
determine the best search operation. We have two options
for differentiating queries. The first one is detection-based,
also known as simple hybrid strategy. In this type, a search
is first performed by flooding. If there are not enough results
returned within a predefined time, the query is resumed to
a DHT query [12]. Although popular and rare data can be
located, locating rare items has a worse response time than
pure DHT. Besides extra cost is incurred by pre-flooding.
The second type utilizes the information gathered through
a gossiping method to estimate the popularity of the items
[23]. Using a threshold to determine whether flooding or
DHT, this approach outperforms simple hybrid techniques.

Hybrid search provides an efficient search for P2P sys-
tems. In order to further improve its performance, we have
to better estimate how many peers can answer a query, so that
a proper search strategy for the query can be determined.

5 Conclusion

This paper has presented various schemes in Structured and
Unstructured P2P overlay networks. Furthermore, we com-
pare the characteristics of each scheme to see how they can
actually interact with each other. Peer-to-peer applications
attracted millions of users in a short period of time. Today,
around 60% to 80% of the Internet traffic originates from
applications within the peer-to-peer paradigm. The most
popular applications are file sharing and content distribu-
tion. Peer-to-peer will still remain attractive for researchers
as central entities can be avoided, straight forward commu-
nications between the nodes, and peer-to-peer requires au-
tonomy of nodes. In order to move forward, Peer-to-peer
demands new ideas from the researchers, new ways of think-
ing and the significant combination of emerging mechanisms
and existing technologies.
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