
Expanding the Web: Is XML Sufficient?

Sharmistha Chatterjee
Helsinki University of Technology

schatter@cc.hut.fi

Abstract

The first elements of the web infrastructure includes HTML
tagging, simple hypertext linking and hardcoded representa-
tion. It had scalability problem when Internet became more
popular and the number of applications provided by the web
increased steadily. This scaling limitation gave the birth of
XML to suffice to the huge demands of the web. This pa-
per explores the cost benefit analysis behind the technologies
used for XML processing. It also presents various optimiza-
tion techniques that can be applied to normal schema-based
XML document and other encoded versions of binary XML.
In this context it finds the drawbacks of using only text or
binary XML in the web. This helps the paper to focus on its
main objective for justifying the reason for use of a combined
form of XML in all applications for increasing efficiency.

KEYWORDS: XML, parser, binary, XQuery, processor.

1 Introduction

In today’s world of Internet communication whether it is
SOAP based system-to-system commmunication or REST
model of distributed computing application or business-2-
business application, all makes use of XML widely. This
has been possible due to huge extensibility of XML. XML
has provided many advantages to the web world due to its
flexibility, expressiveness, and platform-neutrality. The time
consuming parsing technologies of text XML fails to satisfy
the performance requirements of XML-based applications
and their computing infrastructure [11]. Moreover the docu-
ments when used in electronic format fails to embed binary
formats of resources such as fonts, images, and video. Re-
search on text based XML parsing succeeded in improving
the performance of parsers to some extent by generating spe-
cial bytecodes [11]. These bytecodes are designed to reduce
the time of parsing and validation.

Standard textual XML applications use XQuery/XPath
processing technique to decrease processing time. This is
brought about by efficient Schema and XQuery processors.
XQuery is a declarative language used for exchanging and
querying XML data [8]. It contains prologue declarations,
function, variable, XML element construction, and advanced
iteration constructs depending on the type of XML applica-
tion [16]. XQuery/XPath data model uses XPath, an expres-
sion and addressing language for selection of nodes, inte-
gers, strings, and booleans, and sequences from XML’s tree
type representational model. Inspite of application of suit-
able techniques to text XML it is unable to meet the perfor-

mance expectations of all XML based applications.

1.1 Growth of Binary XML
The limitations of text XML in parsing huge XML data gave
the foundation to the growth of binary XML. Binary XML
has been primarly designed to improve parsing and process-
ing capability of text XML. It is a format that does not fol-
low XML specification or direct interoperability with text
XML, but maintains a practical resemblence to text XML
[20]. This resemblence helps to represent almost all types of
documents of text XML in binary XML. The objective be-
hind the proposal of binary XML is to represent XML doc-
uments in such a manner that it can be generated, serialized,
transmitted and interpreted effectively from one end of ap-
plication to the other end of application.

Binary XML also allows conversion of file formats from
text XML to its equivalent binary representation and vice
versa for easy storage and transmission. As binary XML has
been developed as an improved version of text XML, it sup-
ports advanced properties, the most important among which
are reduced size, navigability, presence of more amount of
dynamic memory at run time, low redundancy and efficient
update. With the idea of an alternate representation, the ob-
vious question is that which format is more suitable not only
in efficient processing but also in low cost implementation.
The paper tries to explain that a possible combination of the
two formats can yield best performance by comparing and
contrasting benefits and drawbacks of each format.

The paper is organised as follows. Section 2 cites some ap-
plications of binary XML in different environments. Section
3 gives an outline of the basic properties of XML that any ef-
ficient representation of XML should support. Section 4 dis-
cusses about the most important techniques used by binary
XML for improving application processing time. Section 5
presents some of the limitations of binary XML. Section 6
brings into picture the most popular measures used with text
based XML documents like parallel bit-streaming, XQuery
Processors and XML Screamers. It also tries to estimate the
results if these processes are applied to binary XML. Sec-
tion 7 concludes the topic by justifying that a combination of
binary and text XML can be the most effective solution.

2 Applications of Binary XML
The growth of binary XML and its advantages over text
XML in high speed parsing, compressed representation and
updation efficiency has prompted its use in various applica-
tions. Binary XML then came to be introduced in various



TKK T-110.5190 Seminar on Internetworking 2009-04-27

XML applications of television (TV), XHTML, SVG (Scal-
able Vector Graphics) and XForms (XML data model).

XML in television and mobile XML applications in TV
consumes huge bandwidth and puts a limitation on the num-
ber of XML using channels that can be broadcasted [20].
Also change in broadcast systems in TV require changes
in XML schema that is costly due to time consuming pars-
ing process of text XML. On the other hand binary XML is
resilient to XML-schema changes. The drawbacks of text
XML over binary XML propmted to use binary XML in TV.

Multimedia applications Binary XML reduces overhead
significantly when it is used in representing multimedia
XML documents [2]. Audio-video data are transmitted by
network or file streaming. Their encoding in suitable binary
format boosts transmission time. Geometric data contains
large floating point numbers. Binary encoded multimedia
XML representation (X3D) supports simpler versions of ge-
ometric data in compressed formats by means of Specialized
Codecs. This helps in optimal encoding and decoding.

Seismic data Seismic and other huge datasets represented
in XML consists of large floating point numbers [20]. Such
representation is not efficient due to their large size and the
time taken by XML parsers in converting them to charac-
ter representations. One way to reduce the application pro-
cessing time is to compress the data in codec format. The
other way is to combine them in text and binary XML. Text
XML embeds seismic data control information and binary
XML represents floating point arrays in a attachment using
XOP (XML-binary Optimized Packaging) [19], [20]. Appli-
cations can directly use the parsed data, or obtain its base64
binary character representation from the XOP package.

Business applications Binary XML in small, medium or
large business processes is capable of enhancing random ac-
cess, search and updation of any XML document [20].

Sensor Processing and Communication The application of
XML for sensor processing languages demands small inex-
pensive encoded packets. It is needed for simple encoding-
decoding purposes in safety-critical environment. Binary
XML in sensor communication can process sensor com-
mands and retrieve reports with enormous speed without us-
ing much power and battery life of sensors [20].

3 Properties
XML is a markup language that has some important prop-
erties which affects the format’s utility in different applica-
tions. To make XML format universally acceptable in dif-
ferent devices and platforms with high efficiency the W3C
working group took into consideration some properties of
XML represenation [21]. The following section discusses
about the the most important properties and the principal de-
sign issues involved in attaining those properties.

3.1 Processing Efficiency
Processing efficiency is determined by the total time required
to generate the byte codes from the XML data model, the
parsing speed and the time incurred in data binding [21].

Data binding creates the application data model in XML
from the data contained in the format. For instance data bind-
ing during serialization is directed at retrieving the actual
document from the bytecodes of the serialized data. Taking
into account the principle objective of reducing the process-
ing time of XML based applications, different schemes have
been proposed and researched both on standard and other
encoded versions of XML. While some of the techniques are
successful in gaining the desired objective, research [1], [2],
[7], [12], [13], [20] on different types of applications indicate
that a trade off factor is associated between the technology,
implementation scenario and cost [21].

The most popular optimization procedures for rapid pro-
cessing of XML applications are serlialization and streaming
using binary XML. Serialization is a technique by which an
object’s bits are converted to some format (e.g bytes) and
that state is stored in a storage medium [4]. This procedure
helps in direct parsing the bytes without having transforma-
tion in any intermediate form. The other useful technique of
streaming allows transfer of XML data over the Internet so
that it can be processed steadily in a continuous stream.

For standard textual XML documents efforts have been
made in increasing the efficincy of the XQuery and XPath
processing by using efficient Schema and XQuery proces-
sors. The development and application of XPath and XQuery
techniques have been successful in decreasing the time in
evaluating the XQuery. Comparative studies indicate after
application of the respective processing techniques on both
text and binary XML, binary XML have a higher edge over
text based XML in terms of processing efficiency [21].

3.2 Small Memory footprint

Memory footprint is given by the size of the processor pro-
cessing binary or text XML [21]. The different XML formats
require different types of XML porcessors depending on the
number, complexity of features and amount of data given to
the processors. The platform, programming languages used
together with the XML format serve as major factors in spec-
ifying the type and footprint of XML processor to be used.

Memory footprint plays an important role in database,
data caching and messaging applications. These applications
should have low memory footprint for efficient storage and
retrieval [14]. High Memory footprint leaves a negative ef-
fect on CPU cache utilization for parsers like Xerces [12].

3.3 Space Efficiency

Space efficiency is determined by the amount of dynamic
memory needed to decode, process, and encode a XML for-
mat [21]. Space efficiency is one of the most important cri-
teria in XML processing as a format should be processable
not only in desktop Pcs or servers, but also in small devices
like mobile handsets where power and memory are limited.
This requirement has further neccessitated the development
of alternate processors and alternate processing mechanisms
whose memory footprint are smaller and which are capable
of providing the amount of dynamic memory required to run
the application in the specific platform.

One sort of optimization technique applied on text based



TKK T-110.5190 Seminar on Internetworking 2009-04-27

XML documents for attaining space efficiency is parallel bit
streaming methodology. [13]. However parallel processing
incurs more cost as it is directly linked with CPU cycles of
the processor and the number and type of processors used.

3.4 Compactness
Compactness is determined by the size of XML representa-
tion residing in memory or by the size of the stored XML for-
mat. This size is reduced by including very little extraneous
information. The commonly used compression methods are
lossy/loss-less, schema-based/non-schema-based and delta-
based/non-delta-based compression [21]. While lossless
compression helps to recover every single bit of data after
uncompression, lossy compression eliminates certain infor-
mation from the file to attain permanent compression. The
other useful compression is the delta compression that rep-
resents an updated compressed version of a file than before.

An example of lossless compression of an XML document
is schema-based encoding. But the degree of compactness is
entirely dependent on prior information of the structure and
content of the document. This places limitation on the pres-
ence of schema during compaction for successful reconsti-
tution of the original document. The other useful technique
is the Delta Compression used in Information Push Services
[6]. Push services with XML relies on huge data exchange
and communication resources due to verbosity of XML. One
application of compressing XML data using Delta procedure
is Jdelta compression. It improves the compression ratio
most efficiently with XML documents partcularly in limited
bandwidth and resource constraint scenarios.

The first and foremost advantage acquired by compaction
is in storing large XML documents in a reduced space. It
also helps to transmit huge XML documents in least time.
It is favourable to compress binary XML as the compres-
sion means based on domain-specific knowledge are more
powerful than generic compression. Other than obtaining
compression with binary XML, significant compression ra-
tio has been attained from hardware-based network compres-
sion (e.g. MNP-5) [14]. Its compression and performance
outsets compression obtained through binary XML. More-
over binary compression suffers from additional time and
CPU overhead required to generate the encoding [14].

4 Techniques on Binary XML
This section of the paper compares and contrasts the various
optimization techniques applied on binary encoded versions
of XML. It also analyses the factors that led to the develop-
ment of the techniques, their efficiency and overhead. Fur-
ther by analysing the mode of binary XML representation,
this section tries to justify whether binary XML could be
more suitable form of representation over text based XML.

4.1 Binary XML Serialization
When an XML document is serialized processing efficiency
derived in transmission and reception of documents is in-
creased compared to normal transmission of huge XML data
files [13]. Serialization helps storing the data in a storage

medium like file, or memory buffer or transmitted across a
network connection link using HTTP.

Binary XML serialization could be used based on binary
encoding to yield more compaction to the encoded version.
This type of serilaized data are used for storing and using
it on socket-based network streams [2]. Serialization uses
a technique known as multiple stream serialization. In this
technique related documents are grouped and compressed to-
gether. If the document has several redundant parts they are
treated individually for compression.

Serialization is also used for serializing abstract dataset of
XML for creating XOP packages inside an extensible pack-
aging format (like MIME) [19]. This technique helps to opti-
mize XML Infoset (Information Set) by extracting, decoding
and placing base64-encoded binary data back into the pack-
age. By this it preserves one to one mapping between the
XML Infoset and XOP Packages.

The benefits of serialization are that it achieves some de-
gree of compaction and interoperability by using only bytes.
The most important advantages gained by developers in us-
ing binary XML serialized data is that it requires minimal
changes to existing application layers. This ensures minimal
cost for implementation of binary serialization procedure.

But there are some limitations with XML serialized data
[18]. Any malicious user attempting a denial of service at-
tack (DOS) is capable of sending a continuous stream of
XML data to a Web server that will processes the data till
the computer falls short of resources. The problem of secu-
rity attacks like DOS is prevalent with binary serialized data
similar to serialization of text XML. Hence it cannot be con-
sidered as a secured format of replacement over text XML.

4.2 Binary XML Streaming

Among other means of providing efficiency in space and
time one of them is XML streaming that uses XML stream
processors to generate dynamic XML data. Streaming of bi-
nary XML was introduced to overcome the huge memory
management overhead brought about by XML parsers us-
ing DOM (Document Object Model) methods. Parsing text
XML by DOM parser slows down XML based applications
highly as the parser reads full XML data into memory and
converts it into an XML DOM object [15]. DOM treats the
entire data as a tree structure which incurs heavy expenses
while copying and moving subtrees of a DOM tree.

Binary XML Streaming also shows improved perfor-
mance over event driven text parsers that rely on SAX events
(event-based APIs for parsing elements, tags, etc) to con-
struct XML document [15]. These kind of parsers are depen-
dent on application for collection and storage of SAX events.
XML documents processed on SAX events are error prone
and results in generation of proprietary code. This limits the
exchange of data structures between different applications.

With the limitations seen in text XML parsers streaming
technology on binary XML came to be known widely due
to its several advantages. Stream based processing is capa-
ble of generating optimized application specific XML doc-
uments through proper selection of portions of XML docu-
ment. Streaming yields high compression ratio, compression
speed, decompression speed, document updation efficiency,



TKK T-110.5190 Seminar on Internetworking 2009-04-27

efficiency in incremental processing and querying of docu-
ments from database [15].

XML streaming is used in X3D documents and other real
time applications in web environments. It finds more use-
fulness where network bandwidth and storage conditions are
limited. During streaming the compression algorithm uses
tokenization of XML tags to achieve good compression [12].

4.3 Tokenization
XPath and XQuery uses tokenization for parsing XML doc-
uments. A token is a context dependent meanigful string
(for example: declare namespace) that affects the speed of
XQuery processing based on its type, length and meaning
[16]. On binary encoded XML tokenization process elimi-
nates repeated strings. It also achieves compression by rep-
resenting strings through a single byte [12].

Tokenization can be treated as a powerful compression
strategy for binary XML. The advantages include improving
parsing time and application performance for applications
running under limited network or disk throughput. Proper
tokenizing strategies might improve XQuery performance on
binary XML in future due to its high compressing power.

However tokenization has computation overhead and
hence cannot offer significant performance improvement
where the CPU performance is low. The compresion rate
in tokenization is closely related to the number of repeating
tags and the content of the text [12], [15]. XML documents
having more repeated strings and tags attain more efficiency
due to parsing than documents which do not have structural
similarity. The style and structure of document together with
the algorithm is dependent on how fast the document can be
processed and streamed incrementally over the Internet [15].
This kind of processing strategy cannot yield efficiency on
structurally different binary XML documents.

4.4 Random Access and Accelerated Sequen-
tial Access

Binary stream optimizations also support random access
through pointers [12]. The pointers allow the parser to
progress to any section of the document and retrieve those
portions of document with considerable speed. However the
process of embedding pointers into stream-based processing
affects the speed of retrieval. Hence relevant information re-
garding the nodes should be properly encoded to avoid heavy
computations. At the same time it should leave minimum
changes on XML processing APIs. This type of random ac-
cess apart from navigating and updating a document provides
dynamic document management at an affordable cost.

Random access works on streamed binary XML data
where pointers hold the value of distance in bytes from the
present location to the position of interest in the document.
Random access is also provided by XML stream procesing
APIs, one of which is Random Access XML(RAX) pro-
gramming. RAX developed by an organisation named Tarari
allows random access to formatted messages and files with-
out parsing [9]. Recent advancements on Tarari’s hardware
architecture using RAX 4 and Zlib compression (lossless
data compression technique that works all hardware plat-

forms and OS) has produced outstanding results with binary
XML by reducing the parsing time at the receiver end.

Other than random access, Accelerated Sequential Access
is used to retrieve data items [21]. Its functionality differs
from random access in lookup time for accessing data items.
In contrast to fixed lookup time in random access, sequen-
tial access uses search methods in streaming mode, where
lookup time is independent of the data items in the docu-
ment. This results from using an index with an offset value in
a XML document that skips over the document until start tag
of the next peer element is reached. This ensures that once
the application is aware the queried data item is not present
in the current element it skips over to the next element.

The performance benefit obtained is calculated from the
time complexity used to construct and update the indexes
and special strucutures. This sort of random access is ab-
sent in text XML. Even though binary XML derive certain
benefits out of this this process is entirely dependent on the
design of pointers and indices and their size. In some cases
the pointer structure may be such that it may not yield sig-
nificant performance results during search over text XML.

4.5 Fragmentation

The objective behind this technique is to enable processing
of small parts of XML documets that are requested by the
receiver instead of processing all the data up to the part be-
ing requested [17]. The processing technique dependent on
processors is similar to streaming process with the only dif-
ference of treating smaller fragments independently in ar-
bitary order [21]. The fragments contain the information
of the context in scope specific namespaces (and also in
xml:base, xml:space, and xml:lang). This context informa-
tion helps the parser to detect from language/syntax or no-
tation at which point it should start processing the fragment
body [17]. The fragment body is often associated with the
fragment context specification into a single XML-encoded
object through proper encoding or mulipart MIME. The frag-
ment body can also be linked with the specification sepa-
rately by means of referencing and co-referencing.

Fragmentation facilitates transmission of prioritized inde-
pendent parts of the document with improved error resilience
and access times [21]. Proceesing cost is also minimized
when one or more adjacent extracted fragments are stored
together. The update operations have become much simpler
and less costly due to fragment-level validation compared to
previous document-level validation.

Fragmentation decreases application overhead of the re-
ceiver by receiving only the requested section of the docu-
ment. This technique can be treated as very useful in bi-
nary XML as it does not impose restrictions to application
of other efficient processing techniques. This characteristic
feature offers fragmentation to be used during binary XML
serialization and streaming to enhance application process-
ing time even further at a reduced cost.

4.6 Schema based optimization

A significant amount of compression can be obtained from
schema based optimization. A normal XML document is



TKK T-110.5190 Seminar on Internetworking 2009-04-27

driven by XML schema one of which is the DTD (Document
Type Defination). It contains in detail the structure, content
and semantics of XML documents. Schema-based binary
solutions eliminates parts of the Infoset. This helps to exibit
good peer-to-peer transmission when the sender and the re-
ceiver encode the documents on the basis of same schema
[14]. Such encoding and decoding are common with the
WSDL (Web Service Description Language). In future it
can improve XQuery processing of binary XML by obtain-
ing type information directly from the schema instead of de-
termining at run-time from the incoming stream [12].

This type of optimization is more benefical in peer-2-peer
systems that have no intermediaries [18]. As the intermedi-
aries are not supplied with the complete information of the
schema, it is not possible for an intermediary to update the
decoder on any change in schema structure. This restricts the
schema based solutions to a single-platform and gives rise
to portability problem [10]. Moreover they are unsuitable
for mobile applications with low-power and limited battery
where decoding process consumes more power. In addition it
creates a strong coupling between parsing and schema [12].
Hence this technique should not be used for large scale opti-
mization of binary XML.

5 Limitations of binary XML
The above techniques when successfully applied on binary
XML are able to increase the performance of XML process-
ing [21]. But there are certain limitations.

The use of different representations of binary XML is ori-
ented with the goal and function of the application [10]. As
for example, for server based applications speed is of prime
factor. Hence parsing/generation time of XML documents
should be given prior importance. Web servers and database
systems send out data in chunks that should be buffered dur-
ing parsing. This sort of buffering degrades the scalability
and should have proper compression techniques. Side by
side with the server applications if the requirements of client
and middle-tier applications using XML documents can be
analysed they are found to be different. While client-side
applications demand faster parsing speed to have minimal
rendering time, middle-tier server (like web services) em-
phasizes on portability of data. The techniques applied on
binary XML are directly linked with the purpose, role and
platform of application.

6 Methods of optimizing text XML
This section discusses about the most popular efficient pro-
cessing methods of text XML. It tries to analyse their respec-
tive overheads, performance levels, cost of implementation
and possible outcomes on applying them to binary XML.

6.1 Parallel Bit Stream Processing
Parallel bit stream XML parsing is noted for rendering space
efficiency to XML applications. It transforms byte oriented
character data to a set of 8 parallel bit streams, and then val-
idates, transcodes, and forms the lexical stream using paral-

lel bitwise logic and shift operations [13]. The mapping of
each character code of XML to a bit value not only reduces
the processing amount of information but also reduces the
storage cost of storing any intermediate results during pars-
ing. CPU cycles are reduced by applying hash and regular
expression matching on parallel bit streams. However the
encoding operation may take few cycles depending on the
input characteristics of the XML document, and contribute
to some extent in performance degradation.

By carrying out the overall processing technique in
Single-Instruction Multiple-Data processors, it has shown
considerable performance improvement over single byte text
processing. It also exibits processing improvements over
standard XML parsers like Expat and Xerces. The intra-
chip parallelism provided by multicore processors can suc-
cessfully parse and validate the schema of XML documents
parallely without the need of additional resources.

In many applications the space efficiency obtained from
XML processors is inversely proportional to processing effi-
ciency [21]. This again leads to a trade off between process-
ing and space efficiency which should be carefully judged
from the application perspective and applied suitably. For
instance, XML in sensor networks deployed in military bat-
tlefield should be proceesed by advanced processors to have
miminal processing time, while XML in mobile applications
should use run-time memory more efficiently due to its lim-
ited amount of memory. Considering this tradeoff more ad-
vanced architecture should be designed that will remove this
tradeoff factor and make XML processing combine the ad-
vantages of processing efficiency and space efficiency.

6.2 XQuery Processors

XQuery processors try to attain optimization in efficient path
processing from XML processors and Schema processors
[12]. The optimization procedure adds scalability to XML
documents. The degree of processing efficiency obtained in
XML document or binary encoded versions of it are depen-
dent on type of data received from XML and Schema proces-
sors and the parsing algorithm applied to the received data.
Parsers on binary encoded versions take into consideration
the input document and what type of binary encoding has
been applied to it, to generate stream of SAX events. These
events identify and extract necessary portions of the docu-
ment to the end user. Therefore, if the input document is
compressed and the schema structure is simple, the binary
encoding proceeds quickly and XQuery processors should
give satisfactory performance. Other than having processor
performance a new framework called self-tuning can be in-
troduced to the overall query processing system architecture
[1]. It continuously monitors the incoming queries and ad-
justs the system configuration accordingly. By this way it
tries to maximize the query performance dynamically.

6.3 XPath Evaluation

The major step in optimizing query languages for XML is
reducing the XPath complexity [5]. XQuery processing is
dependent on XPath for extraction of data, joining of several
documents and construction of new documents. The opti-



TKK T-110.5190 Seminar on Internetworking 2009-04-27

mization procedure of XPath has successfully evaluated mu-
tiple queries parallely in a pipelined sequence in linear time.
Through this approach it has become much easier to navigate
elements and attributes in an XML document.

6.4 Semantic Query Optimization for XQuery
This type of optimization (SQO) technique uses the knowl-
edge of XML schema to optimize queries [3]. It has pro-
duced extraordinary performance benefits in deductive, re-
lational, object databases using XML documents in various
search procedures including pattern retrieval, pattern filter-
ing (e.g, join) and pattern restructuring (e.g, group-by). The
first type of optimization technique applied to persistent and
streaming XML generates a pruned query after query simpli-
fication that is efficient to evaluate. The second type of opti-
mization involves rewritting the query. It is restricted to only
persistent XML applications that can preprocess the data and
build indices. Some SQO which are XML stream specific
have drawbacks of addressing queries that have limited pro-
cessing power. Another limitation is that actual physical
implementations for optimizations grow complex for more
powerful and complex queries.

XQuery Optimization Based on Rewriting have been im-
plemented in data integration system called BizQuery [8].
BizQuery exibits remarkable performance in executing com-
plex queries. It can also simplify cost estimation and query
decomposition process. Further the XQuery Rewritter op-
timizer avoids redundant data scanning during processing
queries. This is a type based optimization technique used
to generate precise queries on the basis of XML schema.

Advantages of XQuery The wide usage, functionalities and
predominant role of XQuery in various applications makes
it evident that text based XML can be used in numerous
areas of data integration and data services. The improved
productivity and performance of XQuery proves that binary
XML is not mandatory for increased performance. How-
ever the implementation of XQuery engine should be consid-
ered from application viewpoint as Query engine performs a
sequence of complex operations. These operations can be
costly for some lightweight applications. But inspite of its
short comings, it is one of the cheapest processing technique
as XQuery engine obtained from open source can be easily
integrated with XML applications at no cost.

In future binary XML may become a potential way of in-
creasing the performance of XQuery. This is due to its sup-
port for relational database operations. It also allows scalar
quantities and huge data sets to be embedded within it. This
way it could easily enhance query performance by allowing
index, search and retrieval operations on queries.

6.5 XML Screamers
XML schema validation provides error checking for XML
applications. But it has severe performance bottlenecks. To
overcome the overhead and automate the validation of pars-
ing XML documents, the XML Screamer has been designed.
It is faster than most available processors. Its processing ef-
ficiency speeds up the entire application through single read
operation and efficient generation of application data model

[7]. It also exibits the capacity of integrating deserialization
with scanning, parsing, validation and providing compiled
optimizations specific to each and every XML API.

It is able to undertake schema validation and compiler-
based optimizations at high speed by precomputing data
from SAX events available from the XML Schema. Fur-
ther the design architecture of XML Screamer allows it to
optimize performance of SAX, business object APIs, and of
other specialized APIs. An unique feature possessed by the
Screamer is to generate efficient parsers in C and Java that
optimizes the whole processing cycle. Web service applica-
tions using business object APIs have gained enhanced pro-
cessing speed from the speed of individual XML parsers.

The range of API support currently available with the
XML Screamer is limited, but it can be extended widely to
different environments or applications. Though parser ca-
pability and business object generation functionality of the
Screamer can be extended, the actual performance level is
highly dependent on the XML APIs used. Some design
of APIs may involve excessive string and buffer manipula-
tions with a lot of overhead. Further the parsers generated
by the Screamer must be compatible with the operating sys-
tem, hardware, compiler, libraries present on the target sys-
tem where the application is running.

7 Conclusion
The advantages of using binary XML in different applica-
tions are dependent on the OS architecture and application
puropose [10]. Such conflicting requirements compel de-
signers to decide on which application should memory foot-
print be given more importance than processing efficiency.

This restricts implementation of binary XML in all XML
applications of the web. The same optimization scheme
ranging from serialization, streaming, parallel bit streaming
or processing XQuery cannot be applied to light-weight and
heavy-weight applications in a similar fashion. This is evi-
dent from the difference in the encoding format of multime-
dia applications using real time streaming with the encoding
format of applications using XML documents locally.

Difference in encoding styles prompt processors at the re-
ceiving end to have advanced architectural design to under-
stand all types of binary encoding. This will help receivers
to decode and retrieve the actual document. Also the appli-
cation logic at the sender side should be strong enough to
generate any binary format. Such factors of software appli-
cation design lead to increased cost and complexity.

Considering the limitations of binary XML or text XML
alone, any advanced architecture should combine binary and
text XML to have an intermediate solution. This type of in-
terleaving of the formats can yield the maximum efficiency.
This can be seen in seismic data represenation. The logical
operations in control information present in text XML can be
optimized by XQuery. Control data processing by XQuery
processors, schema validation by XML Screamers and bi-
nary XML represenation using XOP can yield remarkable
performance results. Future research should focus on com-
bining text XML with binary attchments for any XML data.
Such research activities should aim at using XML Screamers
on different otimized versions of encoded, compressed and



TKK T-110.5190 Seminar on Internetworking 2009-04-27

streamed fragments of binary XML to boost performance
level of applications supporting any binary XML format.

This sort of combination of text and binary XML will pre-
serve important aspects of XML that are lost with proprietary
binary formats. It seen seen that Schema based binary opti-
mization looses original Infoset and faces portability prob-
lem. Infoset change/loss limits one of the major characteris-
tics of maintaining a well-formded XML document, present
with text XML. The integration can preserve original content
by efficiently serializing XML Infosets in a manner similar to
XOP [19]. This will help to overcome the portability issue of
binary format. If the range of support of the XML Screamer
can be extended to binary XML, the combined format can
serve a host of XML applications with high parsing speed.

References
[1] XML Query Optimization, 2006.

http://ralyx.inria.fr/2006/Raweb/gemo/uid18.html.

[2] Don Brutzman, Don McGregor,Alan Hudson and
Yumetech Inc. XML Binary Serialization using Cross-
Format Schema Protocol (XFSP) and XML Compres-
sion Considerations for Extensible 3D (X3D) Graphics.
Technical report, September 2003.

[3] Hong Su, Elke A. Rundensteiner, Rundensteiner and
Murali Mani. Semantic Query Optimization for
XQuery over XML Streams. In 31st international con-
ference on Very large data bases, pages 277 – 288,
2005.

[4] Jaakko Kangasharju and Sasu Tarkoma. Benefits of Al-
ternate XML Serialization Formats in Scientific Com-
puting. In 2007 Workshop on Service-oriented com-
puting performance: aspects, issues, and approaches,
pages 23–30, 2007.

[5] Jason McHugh, Jennifer Widom. XQuery Optimiza-
tion for XML. In 25th International Conference on
Very Large Data Bases (VLDB ), pages 315 – 326,
1999.

[6] Junze Wang; Yi Guo; Benxiong Huang; Jianhua Ma;
Yijun Mo. Delta Compression for Information Push
Services. In 22nd International Conference, pages 247
– 252, March 2008.

[7] Margaret G. Kostoulas, Morris Matsa, Noah Mendel-
sohn, Eric Perkins, Abraham Heifets, Martha Mercaldi.
XML Screamer: An Integrated Approach to High Per-
formance XML Parsing, Validation and Deserializa-
tion. In 15th international conference on World Wide
Web, pages 93–102, 2006.

[8] Maxim Grinev, Sergey D. Kuznetsov. XQuery Opti-
mization Based on Rewriting. In 6th East European
Conference on Advances in Databases and Information
Systems, pages 340 – 345, 2002.

[9] Michael Leventhal. Random Access XML Program-
ming Assisted with XML Hardware. In XML Confer-
ence and Exposition 2004, November 2004.

[10] Michael Rys, Shankar Pal, Jonathan Marsh and
Andrew Layman. Standardize Binary Representa-
tion of XML?. http://www.w3.org/2003/08/binary-
interchange-workshop/presentations-microsoft.pdf.

[11] Morris Matsa, Eric Perkins, Abraham Heifets, Mar-
garet Gaitatzes Kostoulas, Daniel Silva, Noah Mendel-
sohn and Michelle Leger. A high-performance inter-
pretive approach to schema-directed parsing. In 16th
International Conference on World Wide Web, pages
1093 – 1114, 2007.

[12] R. J. Bayardo and D. Gruhl and V. Josifovski and J.
Myllymaki. An evaluation of binary xml encoding op-
timizations for fast stream based xml processing. In
13th International World Wide Web Conference, pages
345 – 354, April 2004.

[13] Robert D. Cameron and Kenneth S. Herdy and Dan
Lin. High performance XML parsing using parallel bit
stream technology. In IBM Centre for Advanced Stud-
ies Conference, April 2008.

[14] World Wide Web Consortium. A Case against
Standardizing Binary Representation of XML, Sept
2003. http://www.w3.org/2003/08/binary-interchange-
workshop/29-MicrosoftPosition.htm.

[15] World Wide Web Consortium. The W3C
Workshop on Binary Interchange of XML In-
formation Item Sets, Sept. 2003. W3C Note.
http://www.w3.org/2003/08/binary-interchange-
workshop/31-oracle-BinaryXML_pos.htm.

[16] World Wide Web Consortium, Cambridge,
Massachusetts, USA. Building a Tokenizer
for XPath or XQuery, Apr. 2005. W3C Note.
http://www.w3.org/TR/xquery-xpath-parsing.

[17] World Wide Web Consortium, Cambridge,
Massachusetts, USA. XML Fragment Inter-
change. Feb. 2001. W3C Recommendation.
http://www.w3.org/TR/2001/CR-xml-fragment-
20010212.

[18] World Wide Web Consortium, Cambridge, Mas-
sachusetts, USA. Web Service Architecture, Feb. 2004.
W3C Note. http://www.w3.org/TR/ws-arch/.

[19] World Wide Web Consortium, Cambridge,
Massachusetts, USA. XML-binary Optimized
Packaging, Jan. 2005. W3C Recommendation.
http://www.w3.org/TR/xop10//.

[20] World Wide Web Consortium, Cambridge, Mas-
sachusetts, USA. XML Binary Characterization,
Mar. 2005. W3C Note. http://www.w3.org/TR/xbc-
characterization.

[21] World Wide Web Consortium, Cambridge,
Massachusetts, USA. XML Binary Charac-
terization Properties, Mar. 2005. W3C Note.
http://www.w3.org/TR/xbc-properties.


