Distributed Hash Tables (DHT)

Jukka K. Nurminen

*Adapted from slides provided by Stefan Gtz and Klaus Wehrle (University of TUbingen)

The Architectures of 15t and 2" Gen. P2P

Client-Server

Peer-to-Peer

1. Serveris the central
entity and only provider
of service and content.
- Network managed by
the Server

2. Server as the higher
performance system.

3. (lients as the lower
performance system

Example: WWW

1. Resources are shared between the peers
2. Resources can be accessed directly from other peers
3. Peeris provider and requestor (Servent concept)

Unstructured P2P

Structured P2P

Centralized P2P

Pure P2P

Hybrid P2P

DHT-Based

1. All features of Peer-to-Peer
included

2. (entral entity is necessary to
provide the service

3. C(Central entity is some kind
of index/group database

Example: Napster

1. All features of Peer-to-Peer
included

2. Anyterminal entity can be
removed without loss of
functionality

3. = No central entities
Examples: Gnutella 0.4, Freenet

1. Allfeatures of Peer-to-Peer
included

2. Anyterminal entity can be
removed without loss of
functionality

3. = dynamic central entities
Example: Gnutella 0.6, JXTA

1. All features of Peer-to-Peer
included

2. Any terminal entity can be
removed without loss of
functionality

3. = No central entities

Connections in the overlay
are “fixed”

Examples: Chord, CAN

s

V4

od3

ouf
S

2 2009-09-22 /Jukka K. Nurminen

Addressing in Distributed Hash Tables

e Step 1: Mapping of content/nodes into linear space
e Usually: 0, ..., 2™-1 >> number of objects to be stored

e Mapping of data and nodes into an address space (with hash function)
e E.g., Hash(String) mod 2™: H(,,my data“) = 2313
* Association of parts of address space to DHT nodes

3485 - 611 - 1008 - 1622 - 2011 - 2207- 2906 - (3485 -

610 709 1621 2010 2206 2905 3484 610)

<:> N\ N\)\ /Y N\)\ Fei)

_/ _/ _/ _/ _/ _/ N

2m-1 (
i
H(Node Y)=3485 Often, the address
space is viewed as
a circle.
—(CO- — O

Data item “D”":
H(“D"”)=3107 H (Node X)=2906

2 2009-09-22 /Jukka K. Nurminen

Step 2: Routing to a Data Item put (key, value)
value = get (key)

e Routing to a K/V-pair
e Start lookup at arbitrary node of DHT
e Routing to requested data item (key)

H(,,my data“)
=3107

1008 ;;2011
—O- O 07 Node 3485 manages

keys 2907-3485,

Initial node
(arbitrary)

= pointer to location of data

2 2009-09-22 /Jukka K. Nurminen

Step 2: Routing to a Data Item

e Getting the content

e K/V-pair is delivered to requester

e Requester analyzes K/V-tuple
(and downloads data from actual location - in case of indirect storage)

H(,,my data®)

In case of indirect storage:
= 3107

After knowing the actual
Location, data is requested

0
»
.
.
.
..
st
an®
wunt®

Node 3485 sends
(3107, (ip/port)) to requester

2 2009-09-22 /Jukka K. Nurminen

Chord

2 2009-09-22 /Jukka K. Nurminen

Chord: Topology

e Keys and IDs on ring, i.e., all arithmetic modulo 27160

e (key, value) pairs managed by clockwise next node: successor

1

successor(1) = 1

successor(6) =0 6

2| successor(2)=3

X

|ldentifier

@ Node

Key

2 2009-09-22 /Jukka K. Nurminen

Chord: Primitive Routing

e Primitive routing:
e Forward query for key x until successor(x) is found
e Return result to source of query
e Pros:
e Simple
e Little node state
e Cons:

e Poor lookup efficiency:
0(1/2 * N) hops on average
(with N nodes)

e Node failure breaks circle

2 2009-09-22 /Jukka K. Nurminen

Chord: Routing

e Chord’s routing table: finger table
e Stores log(N) links per node

e Covers exponentially increasing distances:

e Node n: entry i points to successor(n + 2”i) (i-th finger)

finger table keys
i start | succ. 6
0 1 1
1 2 3
2 4 0

\\

2 2009-09-22 /Jukka K. Nurminen

)

finger table keys
i start | succ. 1
0 2 3
1 3 3
2 5 0

finger table keys
i start | succ. 2
0 4 0
1 5 0
2 7 0

Chord: Routing

e Chord’s routing algorithm:

e Each node n forwards query for key k clockwise
e To farthest finger preceding k
e Until n = predecessor(k) and successor(n) = successor(k)
e Return successor(n) to source of query

7
i 127i| Target! Link
0 @ d‘l-ﬂa [14
1 I 10
2 I O | -
4\ b4 13%ar 39
‘.’S;%EZ% -r?g ------.........' \
o 92 JI JO “.---....',‘ 2
“"."|‘
< veL

2 2009-09-22 /Jukka K. Nurminen

Comparison of Lookup Concepts

Per Node Communi- . No false
System S cation Fuzzy Queries) Robustness
tate negatives
Overhead
Central Server O(N) 0(1) \/ \/ X
Flooding 0(1) O(N?) v x v
Search

Distributed 0(log N) 0(log N) % v v

Hash Tables

2 2009-09-22 /Jukka K. Nurminen

Extra slides

Summary of DHT

e Use of routing information for efficient search for content

e Self-organizing system

e Advantages
e Theoretical models and proofs about complexity (Lookup and memory
e Simple & flexible

e Supporting a wide spectrum of applications
e <Key, value> pairs can represent anything

e Disadvantages
e No notion of node proximity and proximity-based routing optimizations
e Chord rings may become disjoint in realistic settings
e No wildcard or range searches

e Performance under high churn. Especially handling of node departures
e Key deletion vs. refresh

e Many improvements published
e e.g. proximity, bi-directional links, load balancing, etc.

2 2009-09-22 /Jukka K. Nurminen

Different kinds of DHTs

e Specific examples of Distributed Hash Tables
e Chord, UC Berkeley, MIT

e Pastry, Microsoft Research, Rice University
e Tapestry, UC Berkeley

e CAN, UCBerkeley, ICSI

e P-Grid, EPFL Lausanne

e Kademlia, Symphony, Viceroy, ...
e A number of uses

e Distributed tracker

e P2P SIP

e ePOST

2 2009-09-22 /Jukka K. Nurminen

