
Extensions to Session Initiation
Protocol (SIP) and Peer-to-Peer SIP

T-110.7100
Applications and Services in Internet

3.11.2009

Jouni Mäenpää
NomadicLab, Ericsson

2

Contents

 Examples of SIP extensions
– Reliability of provisional responses
– Preconditions
– Caller preferences and user agent capabilities
– SIP-Specific Event Notification
– Signaling Compression (SigComp)
– Content Indirection

 Peer-to-Peer SIP (P2PSIP)
– Overview
– Operation
– Resource Location and Discovery (RELOAD)

3

Extending SIP

 Global interoperability possible since the core functionality of SIP
as specified in RFC 3261 is present in every implementation

– A given SIP application can always assume that another SIP
application is able to understand the core protocol

 However, many implementations require functionality beyond the
core protocol

– Thus, extensions are required
– SIP is flexible and easy to extend

 Use of extensions can be negotiated during session establishment
– Two things are negotiated: the extensions the remote party

supports and the extensions that will actually be employed in the
session

4

SIP Extension Negotiation Mechanism

 Three header fields: Require, Supported and Unsupported
 When a dialog is being established, the UAC lists

– The names of the extensions it wants to use in a Require header
field

– The names of the extensions it supports in a Supported header field
– The Unsupported header field is used in error responses

 The UAS can also request extra extensions
 Proxy-Require header field can be used to require support of

extensions from proxies
 The extensions that a proxy or another UA supports can be queried

by using an OPTIONS method
 The names of extensions are referred to as option tags

5

New Methods

 In a SIP dialog, UAs need to know which methods the other
end understands

– An Allow header field lists all the methods a UA supports

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE

 However, the Allow header field cannot be used to express
that a particular method is required in a dialog

– An option tag associated with the method can be used

 Processing of unknown methods and header fields:
– Proxies forward unknown methods and header fields
– Redirect servers ignore unknown header fields, methods and

option tags in Require
– UASs ignore unknown header fields and reject unknown methods

6

Examples of SIP Extensions
 Reliability of provisional responses (RFC 3262)
 SIP-specific Event Notification (RFC 3265)
 User agent capabilities (RFC 3840)
 Caller preferences (RFC 3841)
 Preconditions (RFC 3312, 4032)
 Signaling Compression (RFC 3320, 3486)
 Content Indirection
 SIP REFER method

– Refer peers to third parties (RFC 3515)
– Can be used to implement e.g. call transfer

 Instant messaging (RFC 3428)
– The MESSAGE method allows the transfer of instant messages

 SIP UPDATE method (RFC 3311)
– Update the parameters of a session

 Event state publication (RFC 3903)
– The PUBLISH method to publish e.g. presence information

 Session timers in SIP (RFC 4028)
– Periodic refresh of SIP sessions

 SIP INFO method (RFC 2976)
– To carry session related control information generated during a session
– E.g. carrying DTMF digits generated during a SIP session

 And many others…

7

Reliability of Provisional Responses

 Provisional responses are not transmitted reliably in the core SIP
protocol (RFC 3261)

 However, reliability is important in several cases
 RFC 3262 defines an extension providing reliable provisional

responses
– The option tag of the extension is 100rel
– PRACK method is used to acknowledge provisional responses

 The reliability mechanism works by mirroring the current reliability
mechanisms for 2xx final responses to INVITE

 Each provisional response is given a sequence number, carried in
a RSeq header field in the response

 The PRACK message contains an RAck header field

8

Reliability of Provisional Responses

(5) 180 Ringing
 CSeq: 1 INVITE
 RSeq: 12345

Alice Proxy

(6) PRACK
 RAck: 12345 1 INVITE

Bob

(7) PRACK
 RAck: 12345 1 INVITE

(2) 100 Trying

(1) INVITE
 Require: 100rel
 CSeq: 1 INVITE

(3) INVITE
 Require: 100rel
 CSeq: 1 INVITE

(4) 180 Ringing
 CSeq: 1 INVITE
 RSeq: 12345

(8) 200 OK (PRACK)
(9) 200 OK (PRACK)

(10) 200 OK (INVITE)
(11) 200 OK (INVITE)

(12) ACK

Support of
reliable
provisional
responses
required

100 Trying
is an
exception; it
is never
sent
reliably.

Contains a
sequence
number in
RSeq
header
field.

Contains
the
sequence
number of
RSeq,
sequence
number of
CSeq and
method of
CSeq of the
reliable
provisional
response

(13) ACK

9

Preconditions

 A precondition is a set of constraints about the session which are
introduced in the SDP offer

 The recipient of the offer generates an answer, but does not alert
the user or proceed with session establishment

 RFC 3312 defines an extension allowing UAs to express
preconditions

– The option tag of the extension is ’precondition’
– A mixture between a SIP extension and a SDP extension

 The preconditions are encoded in SDP body
 There are two types of preconditions: access and end-to-end

– End-to-end (e2e) preconditions are useful when end-to-end
resource reservation mechanisms are available

– Access preconditions are useful when both UAs perform resource
reservations on their respective access networks (local and
remote)

10

Example: Access Preconditions

Alice Bob

(1) INVITE
 a=curr:qos local none
 a=curr:qos remote none
 a=des:qos mandatory local sendrecv
 a=des:qos mandatory remote sendrecv

(2) 183 Session Progress
 a=curr:qos local none
 a=curr:qos remote none
 a=des:qos mandatory local sendrecv
 a=des:qos mandatory remote sendrecv

(3) PRACK

(4) 200 OK (to PRACK)

(5) UPDATE
 a=curr:qos local sendrecv
 a=curr:qos remote none
 a=des:qos mandatory local sendrecv
 a=des:qos mandatory remote sendrecv

(6) 200 OK (to UPDATE)
 a=curr:qos local none
 a=curr:qos remote sendrecv
 a=des:qos mandatory local sendrecv
 a=des:qos mandatory remote sendrecv

(7) 180 Ringing

Q
o

S
 R

e
se

rva
tio

n
s

Q
o

S
 R

e
se

rva
tio

n
s

11

Caller Preferences and UA Capabilities

 RFC 3841 describes a set of extensions to SIP which allow a
caller to express preferences about request handling in servers

– Ability to select which URI a request gets routed to
– Specify request handling directives in proxies and redirect

servers
– Three new request header fields: Accept-Contact, Reject-Contact

and Request-Disposition

 RFC 3840 defines mechanisms by which a SIP UA can convey
its capabilities and characteristics to other UAs and to register for
its domain

– Contact header field parameters are used

 Example: Alice has multiple UAs: an office phone and a home
phone

12

User Agent Capabilities

 The REGISTER request below, carries user agent
capabilities in its Contact header field:

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds8

Max-Forwards: 70

From: sip:Alice@example.com;tag=asd98

To: sip:Alice@example.com

Call-ID: hh89as0d-asd88jkk@host.example.com

CSeq: 1 REGISTER

Contact: <sip:alice@host.example.com>;audio;video;

 mobility="fixed";

 class="business";

 language="en,fi";

 methods="INVITE,BYE,OPTIONS,ACK,CANCEL"

Content-Length: 0

The UA supports
audio and video
communications

The UA is fixed
as opposed to
mobile

The UA is used for business
communications

The UA supports the listed
SIP methods

Language of the
human or
automata
represented by
the UA

13

Caller Preferences
 The Request-Disposition header field indicates how servers dealing

with the request should handle it
 The Accept-Contact header field contains a description of the

destination UAs to which it is OK to send the request
 The Reject-Contact header field contains a description of the UAs to

which it is not OK to send the request

INVITE sip:Bob.Jones@domain.com SIP/2.0
Via: SIP/2.0/UDP host1.domain2.com:5060;branch=z9hg4bK74oz98
Max-Forwards: 70
From: Alice <sip:Alice.Smith@domain2.com>;tag=79gy48298h8
To: Bob <sip:Bob.Jones@domain.com>
Call-ID: 56902805845684069@192.0.0.1
CSeq: 1 INVITE
Request-Disposition: proxy, parallel
Accept-Contact:

*;mobility=”mobile”;methods=”INVITE,OPTIONS,BYE,CANCEL,ACK,MESSAGE”
Reject-Contact: *;video
Contact: <sip:alice@192.0.0.1>
Content-Type: application/sdp
Content-Length: 180

(Message body not shown)

14

SIP-Specific Event Notification (1/2)

 The SIP event notification framework can be used by SIP nodes to
request notification from remote nodes

– These notifications indicate that certain events have occurred
– Examples:

 Buddy lists
 Automatic callback services
 Message waiting indications

 Entities in the network can subscribe
– To resource state of resources in the network
– To call state of calls in the network

 The entities receive notifications when the states of the
resources/calls change

 The event notification framework uses two new SIP methods:
– SUBSCRIBE is used to subscribe to the status information of a

resource
– NOTIFY is used to notify of the current status information of the

resource and every time the status changes

15

SIP-Specific Event Notification (2/2)

 Example: Bob subscribes to presence status of Alice

(3) NOTIFY
 Event: presence
 Subscription-State: active;
 expires=599
 Content-Type: application/pidf+xml

Bob
Alice’s presence

server

(4) 200 OK

(2) 200 OK
 Expires: 600

(1) SUBSCRIBE sip:alice@xyz.com
 Event: presence
 Expires: 600

Type of status
information is defined by
an Event header field.
Desired duration of the
subscription is 600
seconds.

The duration of the
subscription will be 600
seconds.

’active’ indicates that
subscription has been
accepted. The
remaining time on the
subscription is 599
seconds. The body of
the NOTIFY contains a
Presence Information
Data Format (PIDF)
document (XML), which
describes Alice’s
presence status.

Subscriber Notifier

16

Signaling Compression (SigComp) (1/5)

 SIP is not an efficient protocol regarding message size
– Problematic e.g., in wireless networks

 Signaling Compression (SigComp) is a protocol for compressing
messages of application protocols

 SigComp messages carry compressed SIP messages in their payload
– The header contains a decompression algorithm (bytecode)

 SigComp defines a Universal Decompressor Virtual Machine (UDVM)
 Decompression algorithms are written in UDVM assembly language

and compiled to bytecode using a UDVM interpreter
 The bytecode is run on the UDVM to decompress the payload
 A new parameter: comp=sigcomp

17

Why is SigComp needed?
INVITE tel:+1-212-555-2222 SIP/2.0
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7
Max-Forwards: 70
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr>
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net>
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=234151D0FCE11
Privacy: none
From: <sip:user1_public1@home1.net>;tag=171828
To: <tel:+1-212-555-2222>
Call-ID: cb03a0s09a2sdfglkj490333
Cseq: 127 INVITE
Require: precondition, sec-agree
Proxy-Require: sec-agree
Supported: 100rel
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321; port-c=8642; port-s=7531
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE
Content-Type: application/sdp
Content-Length: (…)

v=0
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
s=-
c=IN IP6 5555::aaa:bbb:ccc:ddd
t=0 0
m=video 3400 RTP/AVP 98 99
b=AS:75
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:98 H263
a=fmtp:98 profile-level-id=0
a=rtpmap:99 MP4V-ES
m=audio 3456 RTP/AVP 97 96
b=AS:25.4
a=curr:qos local none
a=curr:qos remote none
a=des:qos mandatory local sendrecv
a=des:qos none remote sendrecv
a=rtpmap:97 AMR
a=fmtp:97 mode-set=0,2,5,7; mode-change-period=2
a=rtpmap:96 telephone-event
a=maxptime:20

18

Signaling Compression (2/5)

Compressor
dispatcher

Compressor 1

Compressor 2

State 1

State 2

Decompressor
dispatcher

Decompressor
(UDVM)

State handler

Local application (SIP)

Transport layer

SIP message
Decompressed
SIP message

SigComp message SigComp message

SigComp layer
Carries the compressed
SIP message and a
decompression algorithm

Implements a
compression algorithm

Interface from the
application. Invokes a
compressor

Receives a message,
invokes the UDVM

Decompresses SIP
messages

Stores and
retrieves state

19

Signaling Compression (3/5)

 Basic idea: search for
repeated patterns in the
message

– I.e. exploit the redundancy
within a message

– Replace the re-
occurrences of a pattern
with a pointer to the
previous instance of the
same pattern

– Some examples of
repeated strings are
shown in the figure

INVITE sip:Alice@domain.com SIP/2.0
Via: SIP/2.0/UDP p1.domain.com:5060;branch=xyz
Via: SIP/2.0/UDP c1.domain2.com:5060;branch=abc;
 ;received=123.0.100.4
Max-Forwards: 69
From: Bob <sip:Bob@domain2.com>;tag=123
To: Alice <sip:Alice@domain.com>
Call-ID: 123456789@123.0.100.4
Cseq: 1 INVITE
Contact: <sip:Bob@123.0.100.4>
Content-Type: application/sdp
Content-Length: 120

v=0
o=Bob 2890844526 2890844526 IN IP4 c1.domain2.com
s=-
c=IN IP4 123.0.100.4
t=0 0
m=audio 20000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

20

Signaling Compression (4/5)
 Often SIP messages belonging to the same dialog contain a lot of information

that was also present in earlier messages of the same dialog
– This redundant information can be compressed efficiently

 In dynamic compression, compression is done relative to messages sent prior
to the current compressed message

 In shared compression, messages are compressed relative to messages
received prior to the current compressed message

21

Signaling Compression (5/5)

Alice P1 Bob

(1) INVITE Bob (compressed)
 Via: Alice;comp=sigcomp
 Route: P1;comp=sigcomp
 Contact: Alice;comp=sigcomp

(2) INVITE Bob
 Via: P1
 Via: Alice;comp=sigcomp
 Record-Route: P1
 Contact: Alice;comp=sigcomp

(3) 200 OK
 Via: P1
 Via: Alice;comp=sigcomp
 Record-Route: P1
 Contact: Bob

(4) 200 OK (compressed)
 Via: Alice;comp=sigcomp
 Contact: Bob
 Record-Route: P1;comp=sigcomp

(5) ACK Bob (compressed)
 Via: Alice;comp=sigcomp
 Route: P1;comp=sigcomp
 Contact: Alice;comp=sigcomp

(6) ACK Bob
 Via: P1
 Via: Alice;comp=sigcomp
 Contact: Alice;comp=sigcomp

SigComp Compression

Note: in order to
save space,
header fields are not
shown In correct
format

UAC wants to
receive future
requests and
responses for
this dialog
compressed

Compressed,
because Via
header field
contains
comp=sigcomp.
comp=sigcomp
added to Record-
Route; since UAC
wishes to receive
compressed
requests (Contact
of INVITE) it is
assumed that it
would also like to
send compressed
requests

22

Content Indirection (1/2)

 Content indirection allows one to replace a Multipurpose Internet
Mail Extensions (MIME) body part with an external reference

– The reference is typically a HTTP URI
 The destination UA fetches the contents of the MIME body part

using the references contained in the SIP message
 Motivation:

– Sometimes SIP message bodies are too large even after
compression

– Reduce the load of proxies
– Content not residing on the endpoint
– Problems associated with IP fragmentation when message is

transported over UDP (UDP does not provide transport-layer
fragmentation)

 Example
– Document sharing during instant messaging

23

Content Indirection (2/2)

 Example: SDP as an external reference

INVITE sip:bob@example.com SIP/2.0

From: <sip:alice@example.net>;tag=347242

To: <sip:bob@example.com>

Call-ID: 3573853342923422@example.net

CSeq: 2131 INVITE

Accept: message/external-body application/sdp

Content-Type: message/external-body; ACCESS-TYPE=URL;
URL="http://www.example.net/party/10/2008/announcement";
EXPIRATION=“Wed, 1 Oct 2008 12:00:00 GMT"; size=231

Content-Length: 105

Content-Type: application/sdp

Content-Disposition: session

Content-ID: <4e5562cd1214427d@example.net>

Inclusion of message/external-body
MIME type in Accept header indicates
support for content indirection. UAs
supporting content indirection must
support content indirection of
application/sdp MIME type.

The access-type parameter
indicates that the external content
is referenced by a URI. The
”expiration” parameter specifies
the time period for which the URI
is valid.

Specifies versioning
information for the URI. If the
content referred to by a URI
changes, the Content-ID must
change also.

The purpose of the indirected
content. Here it describes a
session.

24

Peer-to-Peer SIP Overview

 In conventional client/server SIP, there is a relatively fixed hierarchy
of SIP proxies and SIP UAs

 In Peer-to-Peer SIP (P2PSIP), SIP is used in an environment where
the traditional proxy-registrar and message routing functions are
replaced by a distributed mechanism

– This mechanism can be e.g., a distributed hash table (DHT)

 In a peer-to-peer (P2P) overlay network, address-of-record to
contact URI mappings are distributed amongst the peers in the
overlay

SIP proxy-
registrar

25

Peer-to-Peer SIP in IETF

 The details of P2PSIP are being worked out in the P2PSIP working
group of the Internet Engineering Task Force (IETF). The working
group will:

– Define concepts, terminology, rationale, and use cases for P2PSIP
– Standardize a P2PSIP Peer Protocol
– Optionally, standardize a P2PSIP Client Protocol
– Produce a usage document for P2PSIP

 Topics that are out of the scope of P2PSIP:
– Issues specific to applications other than locating users and resources

for SIP-based communications and presence
– Research type of questions
– Locating resources based on something other than URIs
– Multicast and dynamic DNS based approaches as the core lookup

mechanism

26

P2PSIP Overlay

P2PSIP Bootstrap
Peer

P2PSIP Peer

P2PSIP Peer

P2PSIP Client

NAT

NAT

NAT

P2PSIP Overlay

<Resource-ID>
P2PSIP Resource
Record

Interacts with the P2PSIP
overlay through its associated
peer using the Client Protocol.
Does not run the distributed
database algorithm.

Participates in the P2PSIP
overlay and provides storage
and transport services to other
nodes.

Client Protocol

<Node-ID>

First point of contact for a peer
joining the overlay. Can be located:
- By remembering peers from the
 last time the peer was in the overlay
- Through multicast discovery
- Through manual configuration
- By contacting a bootstrap server

Peer Protocol
The protocol spoken between
P2PSIP Peers to share
information and organize the
P2PSIP Overlay network. A
protocol called Resource
Location and Discovery
(RELOAD) is used as the peer
protocol.

The protocol spoken
between clients and peers.
RELOAD is also used as
the client protocol.

Joining peer is a node
attempting to become a
P2PSIP Peer.
Admitting peer helps the joining
peer join the network.

27

P2PSIP Operations (1/2)

 P2PSIP peers are capable of performing operations such as:
– Joining and leaving
– Store and fetch
– Storing information on behalf of the overlay
– Transporting messages

 To join a P2PSIP overlay, a joining peer needs to:
– Contact an overlay configuration server
– Obtain a certificate and a Node-ID

 Central enrollment process vs. self-generated certificates
– Contact a bootstrap peer

 The bootstrap peer will refer the joining peer to an admitting peer
– Contact an admitting peer

 The admitting peer will help the joining peer learn about other
peers in the overlay and establish connections to them as
appropriate

28

P2PSIP Operations (2/2)

 To perform a user registration (i.e. to insert the user’s contact
information into the overlay), a user needs to:

– Calculate a hash of her user name (e.g. alice@example.com) to
produce a Resource-ID

– Locate the peer that is responsible for that Resource-ID
– Store a Resource-ID to contact address mapping in the

responsible peer
 To initiate a call:

– Calculate a hash of the callee’s user name to produce a
Resource-ID

 hash(alice@example.com) = 32B4A7F02C
– Locate the peer that is responsible for that Resource-ID in the

P2PSIP overlay
 A P2PSIP Resource Record with contact information is

obtained: alice@example.com → Alice’s Node-ID
– Establish a direct connection with the callee across NATs
– Send a SIP INVITE request to the callee

29

Example – Bob Calling Alice

[11,12) 3

[12,14) 3

[14,2) 3

[2,10) 3

Node-ID=10

Node-ID=5

Node-ID=3

Alice
sip:alice@p2psip.net
Resource-ID: 2

Bob
sip:bob@p2psip.net
Resource-ID: 12

[4,5) 5

[5,7) 5

[7,11) 10

[11,3) 3

[6,7) 10

[7,9) 10

[9,13) 10

[13,5) 3

(2) Fetch
Resource
Record with
Resource-ID 2

(3) Return
Resource
Record

(1) Calculate
hash(alice@p2psip.net
) = 2

(6) 200 OK

(7) ACK

Finger table

Finger table

Finger table

Predecessor: 5

Predecessor: 10

Predecessor: 3

1

9

13

15

0

14

2

4

6

7

8

12

11

Resources

2

12

(4) AppAttach

(5) INVITE

30

Challenges for P2PSIP

 Security and identity assertion
– No fully distributed system for security exist which would be

as robust as a centralized solution
– IETF proposes a centralized entity contacted at enrollment

time

 Performance
– Increased resource lookup delay
– Classical client-server has a O(1) lookup cost
– E.g. Chord has a lookup latency of O(log(N))

 Regulatory issues
– Lawful intercept, emergency calls

31

Resource Location and Discovery
(RELOAD)
 A P2P signaling protocol specified by the P2PSIP working group
 Used between peers forming an overlay network to provide a self-

organizing overlay network service, including
– Distributed storage
– Message forwarding

 Allows access from client nodes which don’t route traffic or store
data

 Provides the following features
– Security framework
– Usage model
– NAT traversal
– Routing
– Pluggable overlay algorithms

32

RELOAD Architecture

Message Transport

SIP
Usage

XMPP
Usage

Forwarding and
Link Management

TLS DTLS

Storage

Topology Plugin

Overlay Link API

Messaging API

Usage layer
Each application
defines a RELOAD
usage

Usages use RELOAD
through Messaging
API

End-to-end reliability,
request state
management,
dispatches messages
and operations

Processes messages
related to storage and
retrieval of data.

Implements an
overlay algorithm.

Provides packet
forwarding services.
Handles setting up
connections across
NATs using ICE.

33

RELOAD Features (1/2)

 Security framework
– Node-IDs and certificates are assigned by a central

enrollment server
– Also self-signed certificates can be used
– Security at three levels: connections, messages, stored

objects

 Usage model
– Allows the definition of new application usages
– RELOAD can be used also by other applications than P2PSIP

 NAT traversal
– Allows RELOAD to function in environments with NATs and

firewalls
– Interactive Connectivity Establishment (ICE) is used to

establish new RELOAD and application protocol connections

34

RELOAD features (2/2)

 Routing
– A lightweight forwarding header to minimize the load of

intermediate peers
 Via list and destination list

– Basic routing mechanism is symmetric recursive
 Pluggable overlay algorithms

– RELOAD has an abstract interface to the overlay layer
– Each overlay can select an appropriate overlay algorithm

 All algorithms rely on the common RELOAD core protocol
– RELOAD defines three methods for overlay maintenance: Join,

Leave and Update
– Chord DHT is mandatory to implement

A B C D

1. Request
Dest: D

2. Request
Dest: D
Via: A

3. Request
Dest: D
Via: A, B

4. Response
Dest: C, B, A

5. Response
Dest: B, A

6. Response
Dest: A

35

NAT Traversal

 SIP and RELOAD use Interactive Connectivity Establishment
(ICE) to set up connections across NATs

– ICE is used to discover a working path through NATs
– Gather candidate addresses
– Exchange candidates
– Perform connectivity checks

 ICE makes use of STUN and TURN protocols
 STUN – Session Traversal Utilities for NAT

– Determine IP address and port allocated by NAT
– Check connectivity
– Keep-alives

 TURN - Traversal Using Relays Around NAT
– Control the operation of a relay

36

NAT Traversal for Media in SIP

Internet

Private

Private

TURN relay
TURN relay

NAT

NAT

Bob

Alice

Relayed
candidate

Server
reflexive
candidate

Host
candidate

Host
candidate

Server
reflexive
candidate

Relayed
candidate

SIP proxy

STUN/TURN
SIP
Connectivity checks

37

	Extensions to Session Initiation Protocol (SIP) and Peer-to-Peer SIP
	Contents
	Extending SIP
	SIP Extension Negotiation Mechanism
	New Methods
	Examples of SIP Extensions
	Reliability of Provisional Responses
	Slide 8
	Preconditions
	Example: Access Preconditions
	Caller Preferences and UA Capabilities
	User Agent Capabilities
	Caller Preferences
	SIP-Specific Event Notification (1/2)
	SIP-Specific Event Notification (2/2)
	Signaling Compression (SigComp) (1/5)
	Why is SigComp needed?
	Signaling Compression (2/5)
	Signaling Compression (3/5)
	Signaling Compression (4/5)
	Signaling Compression (5/5)
	Content Indirection (1/2)
	Content Indirection (2/2)
	Peer-to-Peer SIP Overview
	Peer-to-Peer SIP in IETF
	P2PSIP Overlay
	P2PSIP Operations (1/2)
	P2PSIP Operations (2/2)
	Example – Bob Calling Alice
	Challenges for P2PSIP
	Resource Location and Discovery (RELOAD)
	RELOAD Architecture
	RELOAD Features (1/2)
	RELOAD features (2/2)
	NAT Traversal
	NAT Traversal for Media in SIP
	Slide 37

